
Carderock Division
Naval Surface Warfare Center
Bethesda, Maryland 20084-5000

METAFILE FOR INTERACTIVE DOCUMENTS, VERSION 2
Application Guide and Draft Performance Specification
for the Encoding of Interactive Documents - MID-2 (3/96)

March 1996

Eric L. Jorgensen, Research and Technology Representative
Navy Technical Manual Working Group

Prepared by the MID-2 Design and Development Team:
Darlene Janiszewski, NAWC-AD, Project Manager
L. John Junod, NSWC-CD
Michael Anderson, Antech Systems, Editor and Team Chairman
David Cooper, Antech Systems

Note: This final draft of the MID-2 (3/96) Specification and Application Guide has been prepared by
the U. S. Navy for purposes of review and comment by the general Navy, DoD, National, and
International technical community interested in standards for Interactive Electronic Documents
which require a mechanism (i.e., script) for controlling the presentation of text, graphics, and other
multimedia information developed for electronic display. It is written as an application of ISO 8879
SGML and utilizes portions of ISO 10744 HYTIME. While it was initiated by the Navy for purposes
of developing a run-time standard for DoD Interactive Electronic Technical Manuals (IETMs), the
MID-2 (3/96) draft specification has been intentionally developed to be suitable for application to
generic scripted interactive documents of any nature and for any application. The Navy point of
contact regarding potential specification coordination issues is Eric Jorgensen, NSWC-CD Code 182,
email: jorgense@oasys.dt.navy.mil.

Approved for Public Release: Distribution Unlimited

FYI
Select CLOSE from the FILE menu to close this document and return to the CALS Specs and Standards main menu.

The Metafile for Interactive Documents, Version 2
Application Guide and Draft Performance Specification

for the Encoding of Interactive Documents
MID-2 (3/96)

March 1996

Prepared by the MID-2 Design and Development Team

Project Manager:
Darlene Janiszewski, NAWC-AD St. Inigoes

Team Chairman & Document Editor:
Michael Anderson, Antech Systems

Team Members:

Len Bullard, Loral
Terri Castelli, CSC

David Cooper, Antech Systems
Michael Croswell, CSC

Mark Drissel, CSC
Rob Groat, Booz Allen

Eric Jorgensen, NSWC Carderock
L. John Junod, NSWC Carderock

Neill Kipp, TechnoTeacher
Steve Newcomb, TechnoTeacher

Perry Rapp, CSC
Rob Sommerville, CSC

MID-2 (3/96)

ii

Contents

1. HOW TO USE THIS APPLICATION GUIDE 1

2. REFERENCES AND SOURCES FOR ADDITIONAL INFORMATION 1

2.1 References 1

2.2 Other sources 1
2.2.1 NAWC-AD, Patuxent River MD, Applied Technology Branch, Code 4.5.8.6 1
2.2.2 NSWC Carderock 1
2.2.3 MID Design & Development Team Members 2

3. MID DEFINITION 2

4. WHY YOU NEED MID 3

4.1 Behavior of applications 3

4.2 The MID approach to standardizing document behavior 3

5. GENERAL DESCRIPTION OF THEORY 4

5.1 Containers 4

5.2 Transitions & Links 5

5.3 Controls 6

5.4 Data Types 7

5.5 Semantic Grouping 7

5.6 Conditionals 7

5.7 Scripting 8

5.8 External Processes 9

5.9 HyTime Location and Linking Constructs 9

5.10 HyTime and SGML Management 9
5.10.1 HyTime Module Declarations 9
5.10.2 SGML and HyTime Notation Declarations 9
5.10.3 MID Parameter Entities 10
5.10.4 MID Document Type Declaration 10
5.10.5 MID Short Reference Maps 10

MID-2 (3/96)

iii

6. DTD WITH ANNOTATIONS FOR DEVELOPERS, ELEMENT NUMBERS 11

7. ALPHABETICAL INDEX OF ELEMENTS 39

8. WHAT HAS CHANGED SINCE ORIGINAL RELEASE OF MID 41

APPENDICES

A. PROCESSABLE MID DTD A.1

B. RELATIONSHIP EXAMPLE B.1

C. MID BACKGROUND C.1

MID-2 (3/96)

1

1. How to use this Application Guide

The primary purpose of this document is to communicate, to authors and developers of MID documents and
applications, the intentions of the design team with respect to implementation of the MID DTD. Section 6 contains the
DTD, with annotations, arranged by functional groupings of elements as described in Section 5. The MID design team
has debated many issues in creating this DTD, and the annotations are presented to pass along as much of that
consideration as possible. There are some issues remaining, and the MID project staff solicits your input to making the
design more useful and complete.

Note that the use of terms such as “specification” or “standard” are not intended to claim the sanctioning of MID in an
official sense. The terminology for describing MID is intended to convey its purpose, namely as a common structure
into which technical information can be translated. For the record, the MID is the result of a research effort, not the
work of a standards body. It is our hope that the technology and techniques employed by MID will prove the concepts to
be valid, and provide guidance to those who would solve the problem of transporting information and logic between
source providers and presentation software. Adoption of MID as an official specification or standard is a consideration
for the future.

This document also contains a general introduction to the MID (Sections 3 & 4), and references for more information
and background (Section 2). For the seasoned MID user, Section 7 provides an alphabetical reference to the elements,
and Section 8 chronicles the changes from the original MID definition (1994) to the current, evolutionary version
(1995). Appendix A contains a processable MID DTD. Appendix B contains an example using elements derived from
the relationship architectural form defined by the MID. Appendix C contains excerpts from the MID Draft
Specification, published in 1994, as an introduction to the original MID concepts and goals.

2. References and Sources for Additional Information

2.1 References

MID Draft Specification. Carderock Division, Naval Surface Warfare Center, Nov. 1994

2.2 Other sources

2.2.1 NAWC-AD, Patuxent River MD, Applied Technology Branch, Code 4.5.8.6

The R&D project that has resulted in the MID concept, design, and prototype implementation was initiated by the
Naval Air Warfare Center - Aircraft Division, St. Inigoes, MD.

The Navy Project Manager is Ms. Darlene Janiszewski. For information concerning the current status of the project, or
for collaboration among Navy projects interested in IETM or MID development, contact Ms. Janiszewski by email at
<djaniszews@ietm.nawcsti.navy.mil>.

2.2.2 NSWC Carderock

The MID project has been coordinated through the Navy representative on the Tri-Services IETM Working Group, the
Naval Surface Warfare Center - Carderock Division. Representatives at Carderock have been integrally involved in
setting priorities, identifying technical issues, and coordinating among IETM development programs during the MID
concept and design phases.

For information concerning the relationship of MID to other Navy and DoD IETM development projects, and to find
out more about the IETM Tri-Service Specifications (MIL-D-87269 and MIL-M-87268), contact Mr. John Junod at
<junod@oasys.dt.navy.mil>.

MID-2 (3/96)

2

2.2.3 MID Design & Development Team Members

The MID Design Team was formed in 1994 to consider possible solutions for problems with IETM interoperability.
The Team identified the problem as being primarily related to transport of IETM data between various presentation
systems. The MID design grew out of a series of meetings where the team considered a wide range of possible technical
solutions.

During 1995, the focus changed from identifying and formulating the basic technical approach for IETM data
transport, to proving and improving the technical design through implementation. A software development effort was
launched, as well as a series of analysis tasks aimed at integrating the MID approach with related, existing and
emerging, standards and technologies. The development and analysis efforts both have the purpose of evolving the MID
design.

The following MID Design Team members were involved as indicated, and may be contacted via email (where listed)
for further information.

Member Organization Involvement Email
Michael Anderson Antech Systems 1995 chairman

1994 design
antech@norfolk.infi.net

Vince Botticelli Lockheed Ft Worth 1994 design
Len Bullard Loral 1995 analysis

1994 design chairman
cbullard@HiWAAY.net

Bryan Caporlette Passage Systems 1994 design
Terri Castelli CSC 1995 development
David Cooper Antech Systems 1995 development lead

1994 design
dwcooper@nando.net

Michael Croswell CSC 1995 development
Mark Drissel CSC 1995 development
Rob Groat Booz Allen 1995 development
Darlene Janiszewski NAWC-AD St. Inigoes 1995 program management

1994 program management
djaniszews@
 ietm.nawcsti.navy.mil

Eric Jorgensen NSWC Carderock 1995 Technical review
1994 Technical review

L. John Junod NSWC Carderock 1995 analysis
1994 design

junod@oasys.dt.navy.mil

Neill Kipp TechnoTeacher 1995 development
1994 design

neill@techno.com

Steve Newcomb TechnoTeacher 1995 development
1994 design

srn@techno.com

Mark Petronic Hughes Aircraft 1994 design
Perry Rapp CSC 1995 development
Rob Sommerville CSC 1995 development
Madeleine Sparks Loral 1994 admin.

3. MID Definition

The Metafile for Interactive Documents (MID) is a common interchange structure, based on the international standards
for SGML and HyTime, that takes neutral data from varying authoring systems and structures it for display on
dissimilar presentation systems. [MID Draft specification, Nov. 94]. It is envisioned that a MID instance will be a hub
document, containing references to various, external source data components. The MID instance will be created by an
interactive, automated process (i.e., a “MIDWriter”), and will be interpreted for viewing by off-the-shelf software
incorporating a “MIDReader.”

MID-2 (3/96)

3

Development of a MIDReader was the primary focus of the 1995 MID project, and its development has served to both
highlight issues in the structure of the MID, and identify implementation issues. Resolution of these issues has resulted
in an evolutionary improvement to the MID specification.

The MID definition is directed to solving a well-known and pervasive problem in the IETM development community:
moving IETM data between presentation products while preserving the (critically important) logic coded in the data. A
major goal of the effort has been to support the Tri-Service IETM Specifications for data storage (MIL-D-87269), and
enable compliance with presentation standards such as MIL-M-87268. The MID makes extensive use of SGML and
HyTime to accomplish this goal in an open and extendible architecture. The following diagram illustrates the intended
use of a MID instance in the context of an IETM delivery.

HyTime Loc
BrowserMIDReader

Browser
(e.g., 87268)MIDReader

MID InstanceMIDWriterIETM Sources
(e.g., 87269)

Figure 1: MID Architecture Overview

MID does not contain format or style information. MID browser software will have to determine positioning and
appearance of MID elements, either explicitly or through some intermediate structure. Document Style Semantics and
Specification Languare (DSSSL) appears to be a likely candidate to apply style and presentation semantics to the MID
definition. However, until an authoritative list of the style characteristics appears, each MIDReader/ browser
application will be responsible for defining how to handle the presentation appearance without coding it into the MID
instance. A good option would be to design SGML structures to specify application of style. This should allow
maximum flexibility in adopting standard methods when they are available, e.g., through tree transforms to DSSSL.

4. Why you need MID

4.1 Behavior of applications

In the context of Interactive Electronic Technical Manuals (IETMs), ‘Interactive’ means that the application reacts to
input from users on a real time basis. This reaction is often to tailor the content and presentation of subsequent
information.

To create an IETM, authors and developers must consider a philosophy different from that used to create page-based
documents; they must program behavior into the document. The encoding of logic to control document behavior is one
facet of electronic delivery that can cause incompatibility between IETM (and other) information systems. The
development of IETM Specifications for document delivery, such as MIL-D-87269, standardize the structures for IETM
content, and introduce logical conditions for information rendering. The MID adds the missing layer - standardization
of the methods for encoding document behavior, and connecting the content to presentation in an unambiguous way.

4.2 The MID approach to standardizing document behavior

The MID, as its name implies, uses a hybrid metafile approach to define templates and methods for encoding logic
intermixed with information content. In the classic sense, a metafile in SGML provides a template that guides an

MID-2 (3/96)

4

author in creation of a DTD. The MID uses “meta” definitions for linking of information, but also defines structures to
be used as translation targets for information to be rendered, and structures for specifying logical flow.

The way that the MID specifies logical flow is through SGML constructs that are borrowed from common
programming languages. Just as compilers and interpreters require a standard syntax to create executable software
from a programmer’s code, a MIDReader requires a standard syntax to produce an interactive presentation from an
IETM author’s document.

In a paper technical manual, an author makes assumptions about the projected level of expertise of the technician, and
then provides tables, diagrams, and paragraphs of text that address, for example, each of the steps in a repair
procedure. Steps that are only done under certain conditions are mixed with steps that are always applicable, because
there is no mechanism for turning off the display of steps that are not applicable. An IETM, on the other hand, can use
multimedia output to show only the applicable information. The application decides when to render (e.g., display) this
information, and how to organize it for maximum efficiency.

The MID structures are what enable an application to determine when, and nominally where, to render information.
The decisions as to when information gets rendered are made by decoding the logic in a MID script, which in turn may
reflect the logic embedded in the source file (MIL-D-87269). An IETM author, already burdened with the responsibility
to encode logic in documents, now has a standardized way to do it. The decisions as to where information gets rendered
are derived from semantic grouping of renderable elements. The MID scripting language allows:

• Conditional rendering

• Logical grouping of elements to be rendered

• Expressions, functions, statements

• Storage of values for later use (i.e., variables), and definition of where the variables apply (i.e., scoping)

• Passing of responsibility to external processes, and means for defining the parameters of the processing

These will be described further in Section 5, and in the Application Notes for individual elements in Section 6.

5. General description of theory

The following paragraphs outline the major types of elements found in the MID DTD. This description is intended only
to give a general overview of how the MID accomplishes its stated goals.

5.1 Containers

InfoContainers define a set of information that is rendered as a package. In the simplest case, an infoContainer (IC)
can define frames of text and graphics that will be simultaneously displayed. In a more complex case, the IC might
contain a script, with a set of variables that affect its behavior, or the behavior of subsequent infoContainers. Transient
panes of information, and user interactions such as alerts and dialogs, might be part of an IC. Conditional information
can be reflowed, based on user input, without leaving the IC. While it is theoretically possible (i.e., syntactically
correct) to place an entire IETM in a single infoContainer by using the power of scripting, this would constitute
poorly-formed MID; authors are encouraged to use the IC to good advantage by logical arrangement.

InfoContainers may be arranged in chains for sequential presentation starting from a defined point, or placed in pools
where they can be reused.

Panes define individual elements of content to be rendered. Typically, a browser would render the contents of a pane in
a window of a graphical user interface. Many panes may be displayed as part of a single infoContainer. A pane
encapsulates a scope that defines its own set of variables, and may use a script to retrieve content from a source
document. A common use of scripting in a pane would be to get information content, based on some conditions, using
a HyTime link.

MID-2 (3/96)

5

Rendering of panes within given screen real estate is the purview of the browser. There are no position, size, or other
visual properties defined as part of the MID pane. Such properties must be derived from a combination of the logical
(i.e., semantic) grouping of the panes, and the application of an optional stylesheet from a source external to the MID.

Panes can be used to implement user interactions by defining a set of controls to be rendered on the pane. Again, the
position and style of controls can not be specified in the MID. In fact, the type of control used in a particular software
environment may vary significantly, depending on the look and feel of the operating system. The MID, for example,
defines a dynamicList element that enumerates choices for a user selection. The list is specified by an attribute to be
either of type pickOne or of type pickMany. A pickOne type dynamicList could be rendered with equal effectiveness as a
drop down list box, a menu, or a set of mutually exclusive (radio) buttons.

Elements of type Containers Element # Description
infoContainer 11 The fundamental building block of a MID application,

defining a logical package of information to be
rendered.

chain 12 A set of infoContainers that are intended to act as a
sequential set. A chain must be navigated starting with
the first infoContainer in the sequence.

pane 13 The delimiter for a logical fragment of content; a
component part of an infoContainer. The pane should
be filled with a single reference, loc, query, or
contiguous piece of information content.

alert 14 Special case of a pane, where the contents are to be
rendered as a transient interaction that must be
acknowledged by the user before continuing (modal).

clientArea 17 Container for panes, paneGroups, and
conditionalPanes.

pool 15 A common resource area, designed to house reusable
containers, scripts, and controls.

messageArea 16 A container for reporting supplemental information
(e.g., instructions, state of the application) that would
typically be related to the information content (rather
than the operation of the browser software).

5.2 Transitions & Links

Transitions can be specified by an author to occur between infoContainers, or within an infoContainer to render new
panes or controls. Types of transitions may include goto, gosub, or spawn. The difference between these transition
types lies in the way the application handles the state of the currently-rendered containers. For example, a button on a
pane within infoContainer IC-1 might contain a script that implements a goto transition to infoContainer IC-2. In this
case, all non-global variables (e.g., set by the infoContainer or a pane in IC-1) would be cleared, and the state space
would be set to represent IC-2 variables. In a similar case where a gosub was specified in place of the goto, the IC-1
variables would be maintained, and then restored at the completion of IC-2. Using a spawn would instruct the
application to simultaneously maintain both sets of state variables. By these mechanisms, an author has the ability to
control the appearance of an application, without undue restriction on the application’s unique look and feel.

A get specifies that information at a source be retrieved, and rendered at the point of the get. This element represents
one of the most important powers that MID offers. The get allows source documents, delivered and maintained
independently, to be bound to the presentation at run-time. It also allows source documents to be in various formats,
and still be accessible to a MID instance. The power of HyTime location and linking facilities is what makes this
capability both practical and standard.

MID-2 (3/96)

6

Relationship is a construct based on a HyTime ilink that allows authors to establish connections between various types
of information in a document. Relationship may be used to implement hotspots in text and graphics. The relationships
in a MID document are located in the pool.

Because relationship is an element pseudo-declaration, many elements may be created to implement relationships
within a given MID. Each of the derived elements will define a specific type of relationship, with the instances of that
element linking information that is related in the defined way. Rendering of the relationships is up to the application;
often the anchors of the relationship links will be treated as hotspots that can be selected by users, and traversed
according to the rules of HyTime ilinks.

Relationships are based on named connections between related information. This enables the author to specify, and the
browser application (MIDReader) to determine, the reason for a particular link, in addition to the linked objects. Thus,
the nature of the relationship is transported from source to end-user.

Elements of type Trans & Link Element # Description
goto 19 Implements a transition to a new context, and forgets

about the old one.
gosub 19 Implements a transition to a new context, but keeps

track of the old one so the application can return when
the new context is terminated, and restore the previous
state.

spawn 19 Maintains the state of two contexts simultaneously;
application allows user to transition between them at
will.

get 20 Enables the collection of information from remote
sources, for rendering at runtime.

relationship 21 A pseudo-declaration (element template) for
establishing types of links that are meaningful in a
given document context. The elements created using
the relationship template may be used for
implementing hyperlinks in a browser application.

5.3 Controls

Controls define means for users to report events back to the MID instance. Authors specify what menus or buttons
should be associated with a particular infoContainer, and how the application should respond to selection of such a
control. Also, user interaction elements such as fillin and dynamicList can be combined with other controls to gather
information through an interactive dialog.

Menus are intended as a generalized way for authors to define the high-level entry points into an information set. The
term menu has certain implications to software developers with respect to rendering. However, menus differ from lists
in the MID only by virtue of the fact that they contain a set of buttons rather than elements of content.

The term button, as menu, has a connotation in the context of graphical user interface (GUI) development. However,
the MID concept of a button does not necessarily imply rendering as a graphical push-button. Buttons will be
considered, during the rendering of a MID instance by an application, to denote the function normally performed by a
button, namely to launch a process.

Elements of type Controls Element # Description
menu 23 A collection of buttons used for launching processes

in a MID browser. Menus are grouped together into
menubars, and reused in infoContainers as
appropriate.

MID-2 (3/96)

7

button 25 A structure representing the generalized function of
launching a process.

fillin 26 A field that allows free-form user input of text.
dynamicList 27 List of content items that is built at runtime using an

expression.

5.4 Data Types

The elements listed as data types are used for containing content information that is rendered, for example, in a pane.
Depending on the implementation of MID, the data may be contained directly in the element, or retrieved by a script.

Elements of type Data Type Element # Description
text, paragraph 30, 33 Contains character data or other text items.
specialText 31 Indicates some text that is qualified by a semantic.
title 32 Defines the text that is to be rendered as a title for the

element that contains it.
graphic, audio, video, animation,
icon

37 These elements access external notations that define
how to access various file formats.

tableType, fcsTable 39 fcsTable is a generalized method of storing data that is
typically rendered in a table format.

orderedList, unorderedList, item 34 These are content intended to rendered as lists. These
are not affect by the support attribute of the mid
element..

5.5 Semantic Grouping

Semantic grouping is used, in lieu of coordinate systems, to indicate to applications the layout priorities for a set of
rendered elements. A grouping might be used by the application to determine how to spatially allocate panes within an
infoContainer, or where to put delimiters such as a ‘group box’ for controls within a user interaction pane. These are
the only cues that the application can get directly from the MID instance to determine placement of windows and
controls on the screen. Authors who do not use these structures risk placement of elements based solely on their order,
or worse, random placement.

Elements of type Sem Group Element # Description
paneGroup 46 A group of panes within an infoContainer.
widgetGroup 47 A group of buttons, dynamicLists, and fillins to be used

for user interaction.
buttonGroup 48 A group of related buttons that are intended for either

single (pickOne) or multiple (pickMany) selection.
menubar 49 A collection of menus and buttons that is reused

among infoContainers.

5.6 Conditionals

Conditionals are used in conjunction with scripts to indicate panes or controls that are rendered only under certain
conditions. The conditions are evaluated when a reflow statement is encountered in a script.

MID-2 (3/96)

8

Conditionals are particularly suited to rendering complex sets of information that contain dependencies. For example,
an author may want to populate an equipment list based on the selection of equipment type. Rather than building
separate panes with the list for each equipment type (and the requisite transitions to the proper pane for rendering), an
author could include a dynamicList within a conditionalWidget, where the list builds its contents based on an
expression that gets re-evaluated at each reflow.

Elements of type Conditionals Element # Description
conditionalPane 51 Wraps a paneGroup that is rendered in entirety when a

reflow is encountered in a script.
conditionalWidget 52 Wraps a widgetGroup that is rendered in entirety when

a reflow is encountered in a script.
reflow 53 This element allows authors to render the conditional

elements within a specific target and its subtree.

5.7 Scripting

Scripting is the means for MID to incorporate application behavior in a document. Authors have control over the flow
of logic by functions, variables, statements, strings, and other operations. Scripts must be interpreted by MID
‘engine’ software, which is developed as part of a browser application, to read or import a document.

Scripts are most often used to determine how, when, and where to get information for rendering. Thus, scripts are
usually closely associated with transition and link elements such as goto, gosub, and spawn.

Elements of type Scripting Element # Description
script 55 Declares an element which encapsulates the logic

defining behavior of a document.
name 56 Identifies a function, variable, xenodecl, or scriptLabel

for purposes of maintaining system state during
execution of a script.

statements 57 A convenient wrapper for logical processes available
for use in a script.

expr 65 A statement type that is evaluated by a script
interpreter, and returns a copy of the result.

assign 67 Places the results of an evaluated expression in a
variable.

vardecl / variable 59/ 66 Declares / stores a value.
funcdecl / function 60/ 68 Declares a function / Sends arguments to a funcdecl or

xenodecl for evaluation.
argdecl / argument 61/ 69 Declares an argument / Passes the results of an

expression to a function for use by the function.
constant 71 Stores a value of a given type.
stringOperations 63 A parameter entity enumerating the types of string

operations in a MID document.
listOperations 64 A parameter entity enumerating the types of list

operations in a MID document.
if, else, loop, continue, break,
switch, case, default, jump,
scriptLabel, gettype

72, 73, 74,
75, 76, 76,
77

Structures that specify flow control in a script. These
generally specify execution of a statement based on
evaluation of an expression.

add, multiply, subtract, divide,
modulus, eq, lt, gt, le, ge,
and, or, ne, not

70 Represent operations to be performed on one or more
expressions, as indicated.

MID-2 (3/96)

9

5.8 External Processes

External processes are accommodated through SGML notations and a structure called a xeno. The xeno element type
definition declares an element which declares a function written in non-SGML encoding and processed external to the
MID. That is, it is used in the same way that an assembler or other non-native application language can be declared
from within another language, e.g., C or ADA. These processes could also be used, for example, to tell a browser how
to use a graphics server to display a particular format of graphics. The xeno requires that a notation location be
specified to enable the MID application to determine which external process must be called to handle the declared
function when called and what arguments must be passed to it.

Elements of type Ext Process Element # Description
xenodecl 95 Binds a name and argument declarations to a call to

an external notation.
xeno 96 Declares an element that calls a function that is not

coded in SGML.

5.9 HyTime Location and Linking Constructs

MID uses many HyTime constructs to provide location and naming conventions, and to link related information
together for retrieval by dissimilar presentation systems.

Elements of type HyTime Element # Description
nameloc, nmlist 101, 102 Named location addresses.
treeloc, relloc, dataloc 104, 105,

106
Coordinate location addresses.

proploc, notloc, bibloc 109, 115,
116

Semantic location addresses.

5.10 HyTime and SGML Management

5.10.1 HyTime Module Declarations

HyTime module declarations that declare which features of the metalanguage standardized by ISO -10744 must be
supported for a MID document entity must be included in the prolog of an SGML document. They follow the close of
the SGML Declaration.

A MID requires the use of the following HyTime modules:

<?HyTime VERSION "ISO/IEC 10744:1992" HYQCNT=32>

<?HyTime MODULE base exidrefs>

<?HyTime MODULE measure>

<?HyTime MODULE locs anydtd coordloc HyQ multloc query relloc>

<?HyTime MODULE links manyanch>

5.10.2 SGML and HyTime Notation Declarations

The following notation declarations are required for the MID.

MID-2 (3/96)

10

• SGML -- enables access to external documents encoded in SGML

<!NOTATION SGML PUBLIC "+//ISO 8879:1986//NOTATION

 Standard Generalized Markup Language//EN">

• HyTime -- enables access to external documents encoded in the Hypermedia Time-based Structuring Language

<!NOTATION HyTime PUBLIC "+//ISO/IEC 10744:1992//NOTATION

 Hypermedia/Time-based Structuring Language//EN">

• HyQ -- enables use of documents that include HyQ queries written in the notation prescribed by ISO 10744

<!NOTATION HyQ PUBLIC

 "+//ISO/IEC 10744:1992//NOTATION HyTime Query Notation//EN" >

NOTE: As other non-SGML data types are required for MIDs, this list must be extended. At this time, the
notations for graphics, audio, video and animation are not prescribed. Also, any notations required for accessing
external processes of other types (e.g., diagnostic modules) are not defined. The HyQ HyTime query language is
being merged with Standard Document Query Language, SDQL, which will also be used in the Document Style,
Sematics, and Specification Language (DSSSL) Standard (ISO/IEC 10179). The NOTATION for HyQ is subject
to revision based on the adoption of SDQL.

5.10.3 MID Parameter Entities

The following entities are defined for inclusion in MID element type declarations (link and loc) and attribute list
declarations (yesorno only):

<!ENTITY % yesorno "NUMBER" >

<!ENTITY % loc "nameloc | treeloc | dataloc | notloc | proploc | relloc | bibloc">

5.10.4 MID Document Type Declaration

This is the formal document type declaration for a MID:

<!DOCTYPE mid PUBLIC "-//USA-DOD//DTD MID Document Type Definition 19951201//EN">

5.10.5 MID Short Reference Maps

It is recommended that the requirements of FIPS 152 which preclude the use of the shortref feature of SGML be waived
for the MID. Furthermore, it is recommended that a shortref map be constructed that simplifies the entering of
complex MID structures such as those used in the <script> element type statements.

MID-2 (3/96)11

6. DTD with annotations for developers and element numbers

Ref MID DTD Application Notes

1 <!--
 MID: Metafile for Interactive Documents
 Document Type Definition

This document type definition shall be identified by the following
declaration:
 PUBLIC "-//MID//DTD MID Document Type Definition//EN"
-->

2 <!-- NOTATIONS -->

3 <!NOTATION SGML PUBLIC
"+//ISO 8879:1986//NOTATION Standard Generalized Markup Language//EN" >

<!NOTATION HyTime PUBLIC
"+//ISO/IEC 10744:1992//NOTATION Hypermedia/Time-based Structuring
Language//EN" >

<!NOTATION HyQ PUBLIC
"+//ISO/IEC 10744:1992//NOTATION HyTime Query Notation//EN" >

<!NOTATION virspace PUBLIC
"+//ISO/IEC 10744:1992//NOTATION Virtual Measurement Unit//EN" >

• HyQ is to be merged with the Standard Document Query
Language (SDQL), also used in the Document Style,
Sematics, and Specification Language (DSSSL) Standard
(ISO/IEC 10179).

4 <!-- ENTITIES -->

5 <!-- locs
 These are the HyTime Location addresses used by the MID. -->

<!ENTITY % locs "nameloc | treeloc | dataloc | notloc | proploc | relloc
| bibloc" >

• Modification of entities is discouraged, because it
will invalidate the standard. The application will
not be expected to reflect modified entities in its
implementation of gettype.

6 <!-- primitives, functionType, variableType, constantType
 The MID script primitives are listed in the entities below. The
application may choose to override these declarations to extend or
constrain the MID definition. An atom is string or any one of the
primitives. -->

<!ENTITY % primitives "boolean | int32 | uint32 | int64 | uint64 |
float32 | float64 | sgmlchar" >

• Authors are recommended against using int64 and
uint64 until such time that it becomes standard in
ANSI C. Declare by support policy if required.

• Definition of the casting rules: from uint to int,
32 to 64, int to float, char to string, int to
boolean, float to boolean, boolean arithmetic: + is
‘or’, * is ‘and’. Anything else is considered poorly-
formed MID, and may result in unpredictable results.

MID-2 (3/96)12

• Logical operators: not, and, & or only apply to
booleans.

• Booleans should not be used as numerics in arithmetic
operations. The results of using a boolean in an
arithmetic operation (add, multiply, subtract,
divide, modulus) is implementation dependent, and
applications are encouraged to warn of a poorly-
formed MID document.

7
<!ENTITY % functionTypes "%primitives | string | atom | list | any |
void" >
<!ENTITY % variableTypes "%primitives | string | atom | list | any" >
<!ENTITY % constantTypes "%primitives | string" >

• Assignment of a string to a character gets the first
character. Assignment of character to string makes a
string of unit length.

• Authors should not perform arithmetic operations
(add, multiply, subtract, divide, modulus) on strings
or characters. This will eliminate problems with
casting in operations where strings and chars are
mixed. Applications will not support such operations
consistently.

• The use of the function type or varible type “list”
will require the used the MID Support attribute. See
element #9, page 13.

8 <!-- MID -->

9 <!-- mid
 The mid element is the root element for a MID application. The
vardecls, funcdecls, and xenodecls in its immediate content are global
declarations to the MID application. The MID instance is processed by
first processing the global declarations and then the master script.
The MID returns the results of evaluating its master script. The type
of the resulting data is given as the value of the functionType
attribute. This specification is redundant and is made solely for
convenience. It is a reportable MID error (RME) if the type of the
return value of the master script does not match the return value of
the MID.

Date and version hold human-readable strings for specifying the date
and version of this document.

The docmdu attribute specifies the measurement domains of the
document's finite coordinate spaces (fcs) and the least common unit
for computing dimensions in each fcs.

The security attribute identifies the security designation for this
MID document. Security is implemented as a HyTime activity policy.

The following are support options for the support statement. The
names may be listed in any order.

MID-2 (3/96)13

conditionalPane
 This document may contain conditional panes.

conditionalWidget
 This document may contain conditional widgets.

fcsTable
 This document may contain MID fcs tables.

list
 If list is specified, this document may use the list data structure
and the list expressions. If list is not specified, list must be
deleted from the functionTypes and variableTypes parameter entities.

MIL-M-87268
 This document is intended to be used in connection with software
whose user interface strictly conforms to MIL-M-87268.

nonMID
 This document may contain addresses of locations in external
SGML/HyTime documents which are not MID documents.

query
 This document may contain queries which address locations in
external SGML/HyTime documents which are not MID documents. If query
support is specified, nonMID support is implied.

relationship
 This document may contain MID relationship forms.

 spawn
 If spawn is specified, this document may contain spawn elements.

string
 If string is specified, this document may use the string data
structure and the string expressions. If string is not specified,
string must be deleted from the functionTypes and variableTypes
parameter entities.

xeno
 If xeno is specified, this mid document may use the xenodecl and
xeno elements. All data content notations must be declared using
notation declarations in the DTD.

-->

<!ELEMENT mid - O ((vardecl | funcdecl | xenodecl)*, script, pool?) >
<!ATTLIST mid
 HyTime NAME #FIXED HyDoc
 id ID #IMPLIED
 functionType (%functionTypes;) atom
 date CDATA #IMPLIED
 version CDATA #IMPLIED

MID-2 (3/96)14

 docmdu CDATA #FIXED "virspace 1 1"
 HyNames CDATA "activity security"
 security IDREFS #IMPLIED
 support NAMES "conditionalPane conditionalWidget fcsTable list
 MIL-M-87268 nonMID query relationship spawn string xeno"
>

10 <!-- CONTAINERS -->

11 <!-- infoContainer
 When an infoContainer is accessed, its declarations are processed.
The menubar is built from the list of menubars given in the attribute
value, then the script (which may contain adjustments to the menubar
in setState commands) is executed. After this, the title, alerts, and
clientArea are processed in the order they appear. The functionType
attribute specifies the return type of this construct.-->

<!ELEMENT infoContainer - O ((vardecl | funcdecl | xenodecl)*, script,
title?, alert*, clientArea, pool?) >
<!ATTLIST infoContainer
 id ID #IMPLIED
 menubar IDREFS #IMPLIED
 functionType (%functionTypes;) atom
>

• InfoContainers and other initialization scripts are
processed in the order that they appear in the MID.
For example, scripts within an infoContainer, title,
alert, clientArea, etc. are processed as the elements
are rendered. Button scripts are only rendered when
they are activated by returned events.

• InfoContainer pools contain panes or widgets that are
used conditionally (or as pop-ups) within the
infoContainer. They are not accessible from outside
the infoContainer.

• ‘functionType’ applies when the infoContainer is for
the purpose of getting input from users.

12 <!-- chain
 Access to infoContainers within a chain is restricted to
infoContainers within that chain. When a chain is accessed, its first
contained infoContainer is processed. -->

<!ELEMENT chain - O (infoContainer)* >
<!ATTLIST chain
 id ID #IMPLIED
>

• The intent is for chains to be used for sequential
access of infoContainers, as in a procedure. Chains
must be entered at the first infoContainer; however,
once in a chain, the author can specify any order of
traversal within the chain.

• If the author intends that a chain be rendered, the
link should be made to the chain rather than
explicitly to the first infoContainer in the chain.

• Spawns to other infoContainers inside the same chain
are considered poorly-formed MID. Spawns outside the
chain are OK.

13 <!-- pane
 A pane is a single user interface presentation, which is rendered
when it is encountered. A pane encapsulates a scope. A get within a
pane causes the target to be rendered on this pane. Scripts within
panes are run when the pane is rendered. The return value of the script
is the return value of the pane. It is a RME if the type of the pane
and the containing script are not the same. A pane is modeless when
contained in a client area or when called from spawn. A pane is modal
when called from gosub.

The security attribute identifies the security designation for this
pane. Security is implemented as a HyTime activity policy.

MID-2 (3/96)15

-->

<!ELEMENT pane - O ((vardecl | funcdecl | xenodecl)*, title?,
(text | %tableTypes; | graphic | audio | video | animation | widgetGroup
| get | script)) >
<!ATTLIST pane
 id ID #IMPLIED
 functionType (%functionTypes;) atom
 HyNames CDATA "activity security"
 security IDREFS #IMPLIED
>

14 <!-- alert
 An alert represents a modal popup window with the contained
information. The contents of the alert are evaluated and rendered in
the order they are encountered. The alert is popped down when a
return alert statement is encountered in the button script. The type
attribute indicates the semantic of the alert. -->

<!ELEMENT alert - O (title?, icon*, text, button) >
<!ATTLIST alert
 id ID #IMPLIED
 type (warning | caution | note) note
>

• Alert border styles are a functional of the rendering
actions of the reader and might be specfied by use of
a style sheet. The style of alert border specified in
MIL-M-87268 are not a function of the MID.

15 <!-- pool
 Elements in the pool are not rendered until they are requested by
identifier reference. The scope of all resolution of variables, etc.,
is always specified lexically, i.e., variables referenced in the pool
are valid or invalid with respect to the containing scope (mid or
infoContainer), not with respect to the caller's state. Among other
things, the pool may contain elements of the following types: HyTime
location address, HyTime hyperlink (e.g., relationship), chain,
infoContainer, menubar, pane, alert. -->

<!ELEMENT pool - O ANY >

• There are two types of pools: MID pools, and
infoContainer pools.

• InfoContainer pools can contain panes, widgetGroups,
and other elements that can legally be contained in
an infoContainer. Other infoContainers, chains, and
scripts are not allowed in infoContainer pools; only
in MID pools. Pools may not be contained within other
pools. Authors must guard against nesting pools,
e.g., within a script in a button that is in a pool.

• Scripts should not be directly in pools, because
there is no specified way to handle it in the DTD.

• The pool is intended as a data container for reusable
elements. Its lexical scope is defined by the scope
of who is referencing it (i.e., pools have no impact
on scope). Handle as macro substitution.

• While an infoContainer could, within the rules of
syntax and without harm to scoping rules, be placed
in the pool of another infoContainer, this would be
considered poorly-formed MID.

• The script interpreter or compiler in a MIDReader
doesn’t need to parse the pools directly - the

MID-2 (3/96)16

contents of the pool are only parsed when referenced
directly. This fact makes the content model of #ANY
manageable for application developers.

16 <!-- messageArea
 The contents will be evaluated and concatenated in the order in
which they appear, and the results will be rendered by the application
as a status message. -->

<!ELEMENT messageArea - O (get | expr | #PCDATA)* >

• ‘get’, as an element of messageArea, should point to
#PCDATA, #RDATA, #CDATA, or to a notation.

17 <!-- clientArea
 A client area is the container for panes, paneGroups, and
conditionalPanes. The panes are rendered in the order they are
encountered. -->

<!ELEMENT clientArea - O (pane | paneGroup | conditionalPane | alert)* >

• In an 87268 implementation, the last child of a
client area must be a widgetGroup pane. This pane is
the footer bar. The members of the widgetGroup may
only be buttons. The label for the widgetGroup will
not be rendered.

• It should noted that an empty clientarea is allowed,
which would provide for script only processing within
the infocontainer.

18 <!-- TRANSITIONS & LINKS -->

19 <!-- gosub, goto, spawn
 Expresses a HyTime hyperlink with specific MID script traversal
semantics.

Gosub indicates that the state of the current infoContainer be saved
and the target object rendered. Gosub targets may be of the following
types: infoContainer, chain, pane, conditionalPane, alert, mid. Gosub
is forbidden to an infoContainer that is nested in another chain.
Gosub is forbidden to a pane or conditionalPane that is nested in
another infoContainer's client area or paneGroup.

Goto indicates that the current infoContainer be abandoned immediately
and the new infoContainer launched. Goto targets may be of the
following types: chain, infoContainer, mid. Goto is forbidden to an
infoContainer nested in another chain. Return values from objects
which are targets of goto are lost, because there is nothing waiting
on the returned value. A goto which targets this MID document is
equivalent to a restart of this MID document.

Spawn indicates that control flow splits. Spawned targets may be of
the following types: infoContainer, chain, pane, conditionalPane,
mid. Both parent and child compete for focus in the
application display space. Spawn is forbidden to an infoContainer
nested in another chain. Spawn is forbidden to a pane nested in a
client area. Return values from spawned objects are lost, because

MID-2 (3/96)17

there is nothing waiting on the returned value. When a spawn is
encountered, control stops in the calling script, the target is flowed
until it reaches an idle state, then the caller continues until it
reaches an idle state. -->

<!ELEMENT (gosub | goto | spawn) - O (%locs;)*>
<!ATTLIST (gosub | goto | spawn)
 HyTime NAME ilink
 HyNames CDATA "linkends target"
 anchrole CDATA "me target"
 target IDREF #REQUIRED
>

20 <!-- get
 Get expresses that the information at the source be collected,
concatenated, and rendered at the point of the get.

If space is specified, the members of a target aggregate will be
delimited by a single space before the data is concatenated. If
normalize is specified, leading and trailing white space is removed,
and multiple contiguous spaces are converted into a single space. -->

<!ELEMENT get - O (%locs;)*>
<!ATTLIST get
 HyTime NAME ilink
 anchrole CDATA "me source #AGG"
 HyNames CDATA "linkends source"
 source IDREF #REQUIRED
 space (space | noSpace) space
 normalize (normalize | noNormalize) noNormalize
>

• A ‘get’ element may point at (i.e., have as its
content source) another get element, and so on in a
chain of indirection to the final data.

21 <!-- relationship
 The relationship form conforms to the architecture for a HyTime
ilink. It expresses an authored relationship between two identified
objects. The application must provide its own element and attribute
declarations for hyperlinking according to the HyTime standard. This
pseudo-declaration is provided as a model for the HyTime ilink. The
generic identifier of the relationship governs the relationship
semantic.

The traversal semantic of the relationship is governed by the
traversal attribute. If traversal is set to be undefined, traversal
decisions will be left up to the application.

Attributes may be added to change traversal from hotspot marking
(interrupt) to hotspot information by request only (polling). This
would prevent hotspot clutter in an on-line index, for example.

<!element relationship - O (title, (%locs;)*)>
<!attlist relationship
 HyTime NAME ilink

• Application of relationship applies to hotspots in
text and graphics. In the case of graphics, the
identification of an object to link to is via a
notation (i.e., names of objects/zones must be
available through a notloc).

• A relationship of traversal type ‘gosub’ to a script
will be treated like a function call, except that the
script is lexically contained only within the MID
instance, not within the other end of the
relationship, and not at its own location within the
SGML instance (because its container might not have
been flowed).

• Note that relationship is an architectural form.

MID-2 (3/96)18

 MID NAME #FIXED relationship
 relationshipName #CDATA #FIXED
 id ID #IMPLIED
 anchrole CDATA #FIXED "antecedent #AGG consequent #AGG"
 linkends IDREFS #REQUIRED
 privTrav NAMES #IMPLIED
 extra NAMES #IMPLIED
 intra NAMES #IMPLIED
 endterms IDREFS #IMPLIED
 aggtrav NAMES agg
 traversal (gosub | spawn | goto | undefined) spawn
>
-->

22 <!-- CONTROLS -->

23 <!-- menu
 This element declares a named and labeled menu of menus and menu
items. If disable is specified, the menu label will be visible but
the menu will be inaccessible ("grayed out"). The menu will be
rendered when its label is selected from a rendered parent menu or
menubar. -->

<!ELEMENT menu - O (label, (menu | button | buttonGroup)*) >
<!ATTLIST menu
 id ID #IMPLIED
 enable (enable | disable) enable
>

24 <!-- setState
 This element indicates that the state of the target object should be
modified according to the attributes and content specified. Possible
targets: menubar, menu, button, buttonGroup. More complicated
substitutions should use the functionality provided by
conditionalWidget.

The toggle attribute tells whether the target should be toggled on,
toggled off, that the toggle should be removed, or that no change to
the toggle should take place.

The enable attribute tells whether the target should be enabled or
disabled ("grayed out") or that no change should be made.

The action attribute tells whether to modify the target, to remove the
target from its position, or to reset the target to its initial
settings.

The content attribute tells how to treat the content of the setState
element. The subelements may be inserted before the target, after the
target, or replace the target entirely. Replacing items on the menubar
with a buttonGroup is not allowed. -->

<!ELEMENT setState - O (menu | button | buttonGroup)* >

#Note: There is an ambiguity here concerning the scope
of setState on a menubar (in global or local pool). A
setState may apply to all instances of the menu in every
scope, or may be limited to the current scope.

MID-2 (3/96)19

<!ATTLIST setState
 target IDREFS #REQUIRED
 toggle (toggleOn | toggleOff | removeToggle | noToggleChange)
noToggleChange
 enable (enable | disable | noEnableChange) noEnableChange
 action (modify | remove | reset) modify
 content (insertBefore | insertAfter | replace) replace
>

25 <!-- button
 A button represents a user interface activation control. The script
is run when the button is activated. If specified, the name of the
button must be unique within a button group. If toggleOn is
specified, the button is rendered with a "toggled on" representation.
If toggleOff is specified, the button is rendered with a "toggled off"
representation. If disable is specified, the button will be visible
but it will be inaccessible ("grayed out"). -->

<!ELEMENT button - O (label?, script) >
<!ATTLIST button
 id ID #IMPLIED
 name NAME #IMPLIED
 toggle (toggleOn | toggleOff | noToggle) noToggle
 enable (enable | disable) enable
>

26 <!-- fillin
 A fillin represents a fill-in-the-blank widget. The initial value
of the variable provides the initial text. When noEcho is
specified, the user's input is not echoed to the display (e.g., for
entering passwords). -->

<!ELEMENT fillin - O (label, variable) >
<!ATTLIST fillin
 id ID #IMPLIED
 echo (echo | noEcho) echo
>

27 <!-- dynamicList
 A dynamicList represents a widget which allows a user to assign a
value to a variable. When encountered, the label is rendered to name
the widget. The expr is evaluated; the results become the option
list, and the option list is rendered. If notRestricted is specified,
the user may enter a value which is not on the option list. The
script gets run when the user makes a selection. -->

<!ELEMENT dynamicList - O (variable, label?, expr, script) >
<!ATTLIST dynamicList
 type (pickOne | pickMany) pickOne
 restricted (restricted | notRestricted) notRestricted
>

MID-2 (3/96)20

28 <!-- label
 A label is made up of any combination of retrieved text, the results
of evaluation of expressions, parsed character data, and icons. It is
rendered when its container is rendered, in such a way as to preserve
the semantic of grouping.-->

<!ELEMENT label - O (get | expr | #PCDATA | icon)* >

29 <!-- DATA TYPES -->

30 <!-- text
 Groups text items. -->

<!ELEMENT text - O (get | expr | #PCDATA | specialText | title |
paragraph | orderedList | unorderedList)* >
<!ATTLIST text
 id ID #IMPLIED
>

31 <!-- specialTextTypes
 Lists the types of text which are recognized as special. -->

<!ENTITY % specialTextTypes
"visualPunch | foreignWord | semanticStress | newTerm |
bibliographicReference |
wordAsWord | wordAsDefinition | informalName | properObject |
mathExpression | acronymExpansion | anchor | none" >

<!-- specialText
 Indicates that the contained text is qualified by some semantic.
-->

<!ELEMENT specialText - O (get | expr | #PCDATA | specialText)* >
<!ATTLIST specialText
 id ID #IMPLIED
 type (%specialTextTypes;) none
>

• specialText will be used for semantic indications.
The type may be associated to a particular appearance
in the browser by an external stylesheet.

• The potential that there is a hotspot on a
specialText is determined purely by the ilink
(relationship) that points to it, and not by reason
of its being specialText.

32 <!-- title
 Title indicates the title of the object which contains it. It is
always to be rendered in such a way as to indicate that association.
The contents of the title element are evaluated and concatenated in
the order that they appear. -->

<!ELEMENT title - O (get | expr | #PCDATA | specialText)* >

33 <!-- paragraph
 Indicates the contained text is regarded and rendered as a
paragraph. -->

MID-2 (3/96)21

<!ELEMENT paragraph - O (get | expr | #PCDATA | specialText)* >
<!ATTLIST paragraph
 id ID #IMPLIED
>

34 <!-- orderedList, unorderedList
 These represent two types of list. An ordered list is typically
rendered with ascending identifying numbers, letters, etcetera. An
unordered list is typically rendered with bullets instead. Items in
either kind of list must be rendered in the order they appear
lexically. -->

<!ELEMENT (orderedList | unorderedList) - O (title?, item+) >
<!ATTLIST (orderedList | unorderedList)
 id ID #IMPLIED
>

• orderList, unorderedList are not affected by the MID
support attribute for list. The support option list
applies to the use of only the function type and
varible type “list”. See also element #9, page 13.

35 <!-- item
 Represents a list item. -->

<!ELEMENT item - O (get | expr | #PCDATA | specialText | orderedList |
unorderedList)* >

• orderList, unorderedList are not affected by the MID
support attribute for list. The support option list
applies to the use of only the function type and
varible type “list”. See also element #9, page 13.

36 <!-- EXTERNAL NOTATIONS -->

37 <!-- icon, graphic, audio, video, animation
 Access to external notations is made from these elements. -->

<!ELEMENT (icon | graphic | audio | video | animation) - O (get |
expr)* >
<!ATTLIST (icon | graphic | audio | video | animation)
 id ID #IMPLIED
>

38 <!-- TABLE ELEMENT TYPES -->

39 <!-- tableTypes
 The table entity is used to allow the application to substitute any
table type into the pane declaration.-->

<!ENTITY % tableTypes "fcsTable" >

40 <!-- fcsTable
 The fcsTable conforms to the HyTime finite coordinate space. It
expresses the abstract layout of a table without imposing assumptions
about how the tabular information will be rendered or used. To
implement fcs tables, applications must implement the following
architectural forms as required by the HyTime standard: fcs, evsched,
axis, event, extlist, measure, granule. The element declarations

• Note that fcsTable is a very general, and non-
implementation specific way to represent data that is
typically rendered in tables. The table type is in an
overrideable entity in order to allow interim use of
more conventional tables in the name of expediency.

MID-2 (3/96)22

below are provided as examples that conform to the needed HyTime
architectural forms; they will be recognized by conforming HyTime
engines.

The fcsTable element contains event schedules. Its axisdefs attribute
lists the generic identifiers of the axes that make up the space. The
event elements contained in evscheds are scheduled on each of the axes
of the fcs. -->

<!ELEMENT fcsTable - O (evsched+) >
<!ATTLIST fcsTable
 HyTime NAME fcs
 MID NAME fcsTable
 id ID #IMPLIED
 axisdefs CDATA #FIXED "x y"
>

41 <!-- Each axis is declared with a specific measurement domain (here,
virspace) and with a specified dimension.

Specific axes with specific axis dimensions must be declared for each
instantiation of table type. The fcsTable and the evsched refer to
the generic identifier of the desired axis.

NOTE: The axis dimensions "4" and "5" are example dimensions.
Particular tables may have any dimension required, theoretically up to
the the high quantum count value in HyTime. -->

<!ELEMENT x - O EMPTY >
<!ATTLIST x
 HyTime NAME axis
 MID NAME axis
 axismeas CDATA #FIXED "virspace"
 axisdim CDATA #FIXED "4"
>

<!ELEMENT y - O EMPTY >
<!ATTLIST y
 HyTime NAME axis
 MID NAME axis
 axismeas CDATA #FIXED "virspace"
 axisdim CDATA #FIXED "5"
>

42 <!-- The axisord attribute of the evsched element type dictates the order
in which dimension specifications are to be listed in the extent list
extlist of every event: first the spec for x, then the spec for y.

The #FIXED value of the basegran attribute of evsched establishes a
base measurement unit for scheduling, in this case a "virtual space

MID-2 (3/96)23

unit" (vsu). -->

<!ELEMENT evsched - O (event)* >
<!ATTLIST evsched
 HyTime NAME evsched
 MID NAME evsched
 id ID #IMPLIED
 axisord CDATA #FIXED "x y"
 basegran CDATA #FIXED "vsu"
 gran2hmu NUMBERS #FIXED "1 1"
 overrun (error | wrap | trunc | ignore) error
>

43 <!-- event, extlist
 The event and extlist elements are used by fcs but do not require
specific-case architectural form initialization. They may be used as
they appear below. -->

<!ELEMENT event - O (get | expr | #PCDATA)* >
<!ATTLIST event
 HyTime NAME event
 id ID #IMPLIED
 exspec IDREFS #REQUIRED
>

<!ELEMENT extlist - O (#PCDATA) >
<!ATTLIST extlist
 HyTime NAME extlist
 id ID #IMPLIED
>

44 <!-- measure, granule
 The evsched element form requires a measure definition to occur
somewhere in the document. The following one is an minimal example.

<measure smu=VIRSPACE>
 <granule gn=vsu gd="1 1 VIRSPACE">
</measure>

-->

<!ELEMENT measure - O (granule+) >
<!ATTLIST measure
 HyTime NAME measure
 id ID #IMPLIED
 smu NAME #REQUIRED
>

<!ELEMENT granule - O EMPTY>
<!ATTLIST granule
 HyTime NAME granule

MID-2 (3/96)24

 gn CDATA #REQUIRED
 gd CDATA #REQUIRED
>

45 <!-- SEMANTIC GROUPING -->

46 <!-- paneGroup
 Panes are grouped with some semantic intention of the author. They
are rendered with a title when encountered.-->

<!ELEMENT paneGroup - O (title?, (pane | paneGroup | conditionalPane)*
) >
<!ATTLIST paneGroup
 id ID #IMPLIED
>

47 <!-- widgetGroup
 A widgetGroup is an optionally labeled group of widgets. All of its
contents are rendered when encountered. The optional script is run
after rendering the widget group, in order that setState may be called
to set the toggled wigets. -->

<!ELEMENT widgetGroup - O (label?,
(widgetGroup | conditionalWidget | buttonGroup | dynamicList | button |
fillin)*, script?) >

48 <!-- buttonGroup
 Represents a labeled group of buttons. The semantic of the grouping
is expressed in the type attribute. An indication of pickOne means
only one button in the group may be selected. An indication of
pickMany means any number may be selected. If a default is specified,
the named buttons are preselected. If no default is specified and the
type is pickOne, the first button is preselected. -->

<!ELEMENT buttonGroup - O (label?, button*) >
<!ATTLIST buttonGroup
 id ID #IMPLIED
 type (pickOne | pickMany | button) button
 default NAMES #IMPLIED
>

49 <!-- menubar
 This element declares a menu bar as a collection of menus and
buttons. The menubar will be rendered when an infoContainer that
points to it via its menubar attribute is rendered.-->

<!ELEMENT menubar - O (menu | button)+ >
<!ATTLIST menubar
 id ID #IMPLIED
>

MID-2 (3/96)25

50 <!-- CONDITIONALS -->

51 <!-- conditionalPane
 When a conditionalPane is encountered, the expression is evaluated.
Each successive expression is evaluated until one is equal to the
first. The paneGroup corresponding to the match is rendered. If no
expressions match, the final paneGroup, if present, is rendered as a
default. This construct is reevaluated when a reflow command is
issued for this element or an element in the proper ancestry of this
element. -->

<!ELEMENT conditionalPane - O (expr, (expr, paneGroup)*, paneGroup?) >
<!ATTLIST conditionalPane
 id ID #IMPLIED
>

• Conditional panes are intended to be used for
alternate displays of panes, as in alternate language
presentation, rather than to implement preconditions
such as those found in MIL-D-87269; a conditional
pane is not intended to be the implementation of an
if-step, nor is it intended to allow an entire
interactive electronic technical manual to be
implemented with a single infoContainer.

52 <!-- conditionalWidget
 When a conditionalWidget is encountered, the first contained
expression is evaluated. Each successive contained expression is
evaluated, in order, until one is equal to the first. The widgetGroup
corresponding to the match is rendered. If no expressions match,
the final contained widget group (if present) is rendered as a default.
 -->

<!ELEMENT conditionalWidget - O (expr, (expr, widgetGroup)*,
widgetGroup?) >
<!ATTLIST conditionalWidget
 id ID #IMPLIED
>

53 <!-- reflow
 When a reflow is encountered, the entire subtree of the target of
the reflow statement is rendered again. The target must be something
in the current infoContainer, and all current states within the scope
of the infoContainer will be respected. When no target is specified,
the entire current infoContainer will be rendered again. If multiple
targets are specified they are rendered again in the order given. -->

<!ELEMENT reflow - O EMPTY >
<!ATTLIST reflow
 target IDREFS #IMPLIED
>

54 <!-- SCRIPTING -->

55 <!-- script
 Scripts are evaluated depending on their context. First the
declarations are evaluated, then the statements. The return type for
the script is specified using the functionType attribute. -->

<!ELEMENT script - O ((vardecl | funcdecl | xenodecl)*, statements) >

• If you GOTO from a script, the flow is terminated,
and statements logically following the GOTO will not
be executed.

MID-2 (3/96)26

<!ATTLIST script
 id ID #IMPLIED
 functionType (%functionTypes;) atom
>

#Note: There appears to be no need for functionType,
because everything that catches a return from a script
could catch the return from what contains the script
(e.g., a pane has a functionType already).

56 <!-- name
 The name of a function, variable, xenodecl, or scriptLabel is
created by evaluating the contained elements in the order they appear
and concatenating the results.

After the data is concatenated, leading and trailing whitespace
characters are ignored, and multiple whitespace characters are
replaced by a single space. SGML NAME characters are folded according
to the NAMECASE GENERAL parameter of the governing SGML declaration.
-->

<!ELEMENT name O O (get | expr | #PCDATA)* >

• Name should resolve to #PCDATA (preferred) or
strings. Developers will expect ‘get’ to return only
these types. The application should be prepared to
handle variable, argument, scriptLabel, and xeno
function names in the character set of the MID
document

• Empty names are not particularly desirable.

#Note: The range of character sets in a MID document
should be defined to guard against implementation
specific requirements driven by differing character
sets.

57 <!-- statements
 Statements are evaluated as directed by the context, in the order
they appear.

NOTE: Although the absence of this container would not create
ambiguities in the MID language (i.e., this container is redundant),
it is provided as a convenience to MID script interpreters. -->

<!ELEMENT statements O O
(expr | if | loop | break | switch | jump | scriptLabel | goto | spawn |
return | reflow | messageArea | setState)* >

58 <!-- DECLARATIONS -->

59 <!-- Declarations
 Declarations are processed and bound to the declared names in the
order the declarations are encountered. If a variable declaration
initializer contains a reference to another variable, the other
variable must have been declared and initialized prior to the
referring declaration. -->

<!-- vardecl
 The vardecl element binds a name to a run-time storage location.
Variables must be declared before use. The expr initializes the
variable. The variableType attribute specifies the type of the
variable. Every variable type has a default initialization: zero for
integer and float types, false for boolean, and null for list and
string. The default sgmlchar is zero. A local name which is the same
as a name declared higher in the scope stack renders the higher named
object unreferenceable (the local name is said to "shadow" the higher
one). -->

MID-2 (3/96)27

<!ELEMENT vardecl - O (name, expr?) >
<!ATTLIST vardecl
 variableType (%variableTypes;) string
>

60 <!-- funcdecl
 The funcdecl element binds a function name with argument list, local
state and statement list. Vardecl names shadow argdecl names. The
number of arguments, their types, and their order are always fixed.
The functionType attribute specifies the return type of the function.
-->

<!ELEMENT funcdecl - O (name, argdecl*, vardecl*, statements) >
<!ATTLIST funcdecl
 functionType (%functionTypes;) atom
>

61 <!-- argdecl
 The argdecl element binds an argument name to a passed value.
Arguments to functions are passed by value. -->

<!ELEMENT argdecl - O (name) >
<!ATTLIST argdecl
 variableType (%variableTypes;) string
>

• Note that the MID DTD does not support default values
of arguments. The function call should contain
exactly as many arguments as the funcdecl specifies,
or the MID script is in error.

62 <!-- STRING and LIST OPERATIONS -->

63 <!-- stringOperations
 The operations specific to string manipulation are collected here.
-->

<!ENTITY % stringOperations "strlen | substr | strcat | fold | isnull |
isstring" >

#Note: A new function, CharAt(string, pos), is under
consideration, which returns a (sgml)char in a specified
position from a string. This can be accomplished with my
proposed casting by doing substr and then casting the
result to a char.

64 <!-- listOperations
 The operations specific to list manipulation are collected here.
-->

<!ENTITY % listOperations "list | cons | car | cdr | append | isnull |
islist | nth | count" >

#Note: As noted under cons element below, this function
can be performed as a special case of append.

65 <!-- expr
 The expr element is evaluated as one of its contained elements. A
copy of the result is returned.

NOTE: Although the absence of this container would not create
ambiguities in the MID language (i.e., this container is redundant),
it is provided as a convenience to MID script interpreters. -->

• Casting recommendations are shown in the primitives
entity declaration.

MID-2 (3/96)28

<!ELEMENT expr - O (assign | variable | constant | function |
add | multiply | subtract | divide | modulus | eq | lt | gt | le | ge |
and | or | ne | not | gettype |
%stringOperations; | %listOperations; | gosub) >

66 <!-- variable
 The contents of the storage bound to the name are returned to the
caller. -->

<!ELEMENT variable - O (name) >

• Variable will be searched in nearest lexically
enclosing scope. For example, if the reference is
inside of a function, but the variable is not within
the function, then the scope of the pane containing
the function will be tried next, then the
infoContainer containing the pane, then the MID
itself (ie, the declarations directly in the mid
element).

67 <!-- assign
 The expression is evaluated and the results are placed in the
variable storage bound to the name. -->

<!ELEMENT assign - O (name, expr) >

• Implicit casting will be performed as necessary by
the script interpreter.

68 <!-- function
 The arguments are evaluated in the order in which they appear and
the results are passed as arguments to the named funcdecl or xenodecl.
-->

<!ELEMENT function - O (name, argument*) >

• Default arguments are not supported; the function
call should have the same number of arguments as the
function declaration had.

• Argument types should match declarations, or should
be designed in accordance with known casting rules
(coercible)

69 <!-- argument
 The expression is evaluated as the argument passed to a
function. -->

<!ELEMENT argument - O (expr) >

70 <!-- add, multiply, subtract, divide, modulus, eq, lt, gt, le, ge,
and, or, ne, not
 The expressions are evaluated and the operation is applied according
to the data type. -->

<!ELEMENT (add | multiply) - O (expr+) >
<!ELEMENT (subtract | divide | modulus) - O (expr, expr) >
<!ELEMENT (eq | lt | gt | le | ge | and | or) - O (expr)+ >
<!ELEMENT ne - O (expr, expr) >
<!ELEMENT not - O (expr) >

• Numeric operations (add, mult, sub, div, mod) should
have numeric arguments (int32, uint32, int64, uint64,
float32, float64).

• Lexicographical relations (lt, gt, le, ge) may be
used on two numeric args, two sgmlchar args, or two
string args. SGMLChar can be compared to any string
whose length is one.

• Boolean operations (and, or, not) should have boolean
arguments (boolean).

MID-2 (3/96)29

• Equality operators (eq, ne) can have arguments in
several categories (including chars, strings, lists,
numeric, boolean). Strings and lists should only be
compared within their own type. Numeric/boolean types
can be compared (casting rules will apply). SGMLChar
can be compared to any string whose length is one.

• The application is expected to implement all
arithmetic results, including implementation
dependent ones, so that (eq a b) will be true if and
only if (ne a b) is false, for any a and b.

• Lexicographical comparison of chars or strings needs
to be standardized. For now, assume that a char may
be compared lexicographically with a string, with the
proviso that (e.g.) ‘f’ precedes ‘fa’.

• Similarly, a char may be compared for equality with a
string of length greater than one - it will be
unequal.

#Note: There is a difficulty if one string (or char) is
from a different notation than the other. Then the
results are implementation dependent.

#Note: Addition of BitwiseAnd and BitwiseOr operators
(or equivalents with better names), whose arguments
should be integers, is under consideration.

71
<!-- constant
 The contents are evaluated and a value of the given constant type is
constructed. The contantType attribute specifies the data type.

The regular expressions and semantics for the MID primitives are as
follows, with keywords and letters folding case by the rule of the
SGML namecase.

 boolean
 ("true"|"false"|"1"|"0"|"yes"|"no")

"true", 1, and "yes" are equivalent; "false", 0, and "no" are
equivalent.

We declare the following as shorthand:
 DIGIT = ("0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9")
 NZDIGIT = ("1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9")

 int32, int64
 ("+"|"-")?, NZDIGIT, DIGIT*

These constants are base 10 representation only. "+" indicates
positive; "-" indicates negative.

 uint32, uint64
 NZDIGIT, DIGIT*

• Strings or lists with nothing in them are null.

• Empty constants of type number or boolean are
discouraged, and might not be handled consistently by
software applications.

• ‘get’ as an element of a constant should point to
#PCDATA, or a notation.

• If get as an element of a constant points to a
function call, it should be a call to a xeno
function, and the MID author should be indifferent as
to whether the application evaluates the constant by
calling the xeno function only the first time, or
every time.

• Be sure to fold with normalize ‘on’ before using
strlen, substr, or isnull if you want to get a length
or sub without the CR, LF, RS, RE, etc. Otherwise
these will include the CR, etc in the string.

MID-2 (3/96)30

 These constants are base 10 representation only.

 float32, float64
 ("+"|"-")?, DIGIT+, ".", DIGIT+ , ("e", ("+"|"-")?, NZDIGIT,
DIGIT*)?

The "e" means "times-ten-to-the". Digits are required on both sides
of the decimal point. The mantissa is represented in 16 bits for
float32, and 32 bits for float64. The remaining bits are reserved for
the exponent.

 sgmlchar
 And any single valid sgml character

 string
 any valid string of sgml characters

NOTE: In string and sgmlchar, record start (RS) and record end (RE)
are ignored according to the rules in ISO 8879.

-->

<!ELEMENT constant - O (get | #PCDATA)* >
<!ATTLIST constant
 constantType (%constantTypes;) #REQUIRED
 normalize (normalize | noNormalize) noNormalize
 recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter
>

72 <!-- if, else
 If the expression evaluates to true, the statements in the
statements element are executed. Otherwise, the statements within the
else are evaluated. -->

<!ELEMENT if - O (expr, statements, else?) >
<!ELEMENT else - O (statements) >

73 <!-- loop
 The expression is evaluated. If the expression is true, the
statements are executed. The expression is reevaluated and the
statements are re-executed until the expression returns false. -->

<!ELEMENT loop - O (expr, statements) >

• The expr in ‘if’ or ‘loop’ should be boolean or
numeric. Casting applies in the numeric case.

• Jumps in and out of loops are prohibited. The stack
will be busted if you try this, thereby causing much
weaping and finger pointing by the programming staff.

74 <!-- continue, break
 Continue causes execution to resume at the top of the nearest
enclosing loop, whereupon the loop's expr is reevaluated. As always,
if the expr evaluates to false, execution resumes at the statement
following the loop. Break causes execution to resume at the statement

MID-2 (3/96)31

following the nearest enclosing loop or switch. If there is no
lexically enclosing loop, continue is ignored. If there is no
lexically enclosing loop or switch, break is ignored. No stacks are
affected. Jumping to a point within a loop initiates looping
behavior. Jumping to a point within a switch causes the switch's expr
to be evaluated automatically prior to execution of any statements.
-->

<!ELEMENT (continue | break) - O EMPTY >

75 <!-- switch, case, default
 The expression is evaluated. Each of the expressions of the cases
is evaluated in the order in which the cases appear until one matches
the switch expression. If a match is found, the statements under the
matched case are executed until a break is encountered. Control
continues to the statements under the next case if no break is
encountered; the interceding expr is not evaluated. If no case
expression is matched, the default statements are executed.-->

<!ELEMENT switch - O (expr, case*, default?) >
<!ELEMENT case - O (expr, statements?) >
<!ELEMENT default - O (statements?) >

• See rules for ‘eq’ in regard to expression
comparison.

76 <!-- jump, scriptLabel
 Control immediately jumps to the named script label. Certain
restrictions apply: script labels are scoped local to a given
script. -->

<!ELEMENT jump - O (name) >
<!ELEMENT scriptLabel - O (name) >

77 <!-- gettype
 Returns the type of the expression. Return type: string. -->

<!ELEMENT gettype - O (expr) >

• The string will be exactly as listed in the original
primitives and variableTypes entity declarations.

78 <!-- STRING OPERATIONS -->

79 <!-- strlen
 Returns the length of the string. Return type: uint32. Returns zero
as a ’reportable MID error’ if expression is not a string. -->

<!ELEMENT strlen - O (expr) >

80 <!-- substr
 First expr: string. Second expr: start position. Third expr: run
length. This construct returns the substring of the string, given
start position and run length. Start position is counted from 1.

• First expr must be a string. Second and third expr
must be numeric.

MID-2 (3/96)32

Unspecified run length or run length greater than the length of the
string indicates the rest of string. Returns null string if start
position exceeds string length. Return type: string. -->

<!ELEMENT substr - O (expr, expr, expr?) >

81 <!-- strcat
 Returns the concatenation of the strings. Expressions in this
element's immediate content which evaluate to non-strings are ignored.

If space is specified, a space character is inserted between
expressions. If normalize is specified, leading and trailing white
space is removed, and multiple contiguous spaces are converted into a
single space.

Return type: string. -->

<!ELEMENT strcat - O (expr)+ >
<!ATTLIST strcat
 space (space | noSpace) noSpace
 normalize (normalize | noNormalize) noNormalize
 recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter
>

82 <!-- fold
 Returns the folded version of the string. Converts string to
uppercase using SGML name case folding rules. The name attribute
tells whether the name characters are to be folded according the SGML
declaration rules for entity names or for general names. Return type:
string. -->

<!ELEMENT fold - O (expr) >
<!ATTLIST fold
 name (general | entity) general
 normalize (normalize | noNormalize) noNormalize
 recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter
>

83 <!-- isnull
 This function returns true if the expression is a null (empty)
string or a null list. It returns false otherwise. Return type:
boolean. -->

<!ELEMENT isnull - O (expr) >

84 <!-- isstring
 Returns whether the expression is a string. Return type: boolean.
-->

<!ELEMENT isstring - O (expr) >

MID-2 (3/96)33

85 <!-- LIST OPERATIONS -->

86 <!-- list
 Each expression in the content of this element is evaluated and
becomes an top-level item on the returned list. If no expressions are
specified, this element returns a null list. A list in MID has the
same binary tree implementation as lists in Lisp or Prolog. Return
type: list. -->

<!ELEMENT list - O (expr)* >

• Each expression creates a single element (which could
be another list).

87 <!-- cons
 This function returns a list in which the result of evaluating the
first expression is prepended to the list found in the second
expression. The second expression must be a list. Return type: list.

NOTE: The names cons, car, and cdr, while perhaps non-intuitive in
English, is precisely meaningful in LISP; they were chosen
deliberately to enhance interdisciplinary communications. -->

<!ELEMENT cons - O (expr, expr) >

#Note: cons is somewhat redundant and may be removed
from DTD at a future date. Because we only allow cons
when the second element is a list,

 (cons (a) (b))

can be accomplished as

 (append (list (a)) (b))

where in both cases b is constrained to be a list.

88 <!-- car
 This function returns the car of the list, i.e, the first item of a
cons pair. The expression must be a list. Return type: any. -->

<!ELEMENT car - O (expr) >

89 <!-- cdr
 This function returns all but the first item in a list (the second
half of a cons pair). Return type: list. -->

<!ELEMENT cdr - O (expr) >

90 <!-- append
 This function returns the results of appending a list to a list.
Return type: list. -->

<!ELEMENT append - O (expr, expr) >

• Both expressions must be lists. The second expr is
appended to the first.

#Note: A generalized append could be specified with a
content model of (expr, expr+).

91 <!-- islist
 This function returns true if the expression is of type list.
Return type: boolean. -->

<!ELEMENT islist - O (expr) >

92 <!-- nth

MID-2 (3/96)34

 expr1: list. expr2: integer. Returns the nth item of the list,
counting from one, without recurring into nested lists. Returns the
null list if there is no such item. Return type: atom or list. -->

<!ELEMENT nth - O (expr, expr) >

93 <!-- count
 Returns the number of items in the given list, without recurring
into nested lists. Returns zero if expression is a list which has no
members. Return type: uint32. -->

<!ELEMENT count - O (expr) >

94 <!-- EXTERNAL PROCESS -->

95 <!-- xenodecl
 The xenodecl element binds a name and argument declarations to a
call to an external notation. The functionType attribute specifies
the return type of this construct.-->

<!ELEMENT xenodecl - O (name, argdecl*, xeno) >
<!ATTLIST xenodecl
 functionType (%functionTypes;) atom
>

96 <!-- xeno
 The xeno element represents a subclass of the HyTime notloc.
Argument names from the containing xenodecl indicate substitution into
the RCDATA of the xeno when the argument name is surrounded by the
string tokens specified in argBegin and argEnd.-->

<!ELEMENT xeno - O RCDATA >
<!ATTLIST xeno
 HyTime NAME notloc
 id ID #IMPLIED
 qdomain IDREFS #IMPLIED
 qcontext IDREF #IMPLIED
 ordering (ordered | noorder) noorder
 set (set | notset) notset
 aggloc (aggloc | agglink | nagg) nagg
 argBegin CDATA "$("
 argEnd CDATA ")"
>

• Xeno functions are intended as a catch-all for
functions that are not included in the MID. The
referenced notation defines the standard way that the
xeno is to be implemented in practice. In the near
term, this may require that authors make assumptions
about platforms, and deliver code (DLLs) to execute
their functions in order to handle any returns
needed.

#Note: Support names may be needed for specific formats
of graphics, text, audio, video, etc. These indicate a
requirement for MIDReaders where there are well-known
notations that do not need a specific author-defined
xeno to execute. Use public notations where available,
and name them in support declaration. Examples: BMP,
JPEG, CGM, TIFF, WMF.

#Note: A standard notation for DLLs may be useful.
Define in terms of a string that can be passed via the
RCData in the xeno:

DLL Name

Function entry point name

Number of arguments

Argument types and names

MID-2 (3/96)35

Arguments in specific order

Return type

Calling convention

97 <!-- return
 This element terminates processing of the nearest containing
construct specified by the construct attribute, and returns the value
resulting from evaluating the expression. If there is no expression,
the return value is the default initialization for the stated return
type. -->

<!ELEMENT return - O (expr?) >
<!ATTLIST return
 construct (mid | chain | infoContainer | pane | alert | script |
function) function
>

• Care should be exercised to insure that a return
references a lexically enclosing construct. For
example, an infocontainer may not call a global level
function and have the global level function end the
infocontainer with a <return construct=infocontainer>

• A <return contruct=script> when executed within a
function is equivelant to a <return
contruct=function>. If a return with construct=script
is executed outside a function, its result will be to
terminate the script.

98 <!-- HYTIME -->

99 <!-- security
 Security is an implementation of the HyTime activity form. The
security attribute tells what level of security. Elements mid and
pane may point to a security element, thereby indicating the security
level. The contained script (if any) will be run when the indicated
activity (in this case, access) occurs.-->

<!ELEMENT security - O (script)? >
<!ATTLIST security
 id ID #IMPLIED
 HyTime NAME activity
 actypes NAMES access
 level (unclassified | confidential | secret | topSecret) unclassified
>

100 <!-- The following HyTime location types are instantiated directly
from the HyTime standard. -->

101 <!ELEMENT nameloc - O (nmlist | HyQ)* >
<!ATTLIST nameloc
 HyTime NAME nameloc
 id ID #REQUIRED
 ordering (ordered | noorder) noorder
 set (set | notset) notset
 aggloc (aggloc | agglink | nagg) nagg
>

102 <!ELEMENT nmlist - O (#PCDATA) >
<!ATTLIST nmlist

MID-2 (3/96)36

 HyTime NAME nmlist
 nametype (entity | element | unified) #REQUIRED
 obnames (obnames | nobnames) #REQUIRED
 docorsub ENTITY #IMPLIED
 dtdorlpd NAMES #IMPLIED
>

103 <!ELEMENT HyQ - O (#PCDATA) >
<!ATTLIST HyQ
 HyTime NAME nmquery
 qdomain IDREFS #IMPLIED
 qcontext IDREF #IMPLIED
 notation NAME #FIXED HyQ
 delims CDATA #IMPLIED
 fn NAME #IMPLIED
 usefn NAME #CONREF
 args IDREFS #IMPLIED
 qpnpsn NAMES #IMPLIED
 qltnlmgi NAMES #IMPLIED
>

104 <!ELEMENT treeloc - O (marklist*) >
<!ATTLIST treeloc
 HyTime NAME treeloc
 id ID #REQUIRED
 overrun (error | wrap | trunc | ignore) error
 treecom (treecom | ntreecom) ntreecom
 locsrc IDREFS #IMPLIED
 ordering (ordered | noorder) noorder
 set (set | notset) notset
 aggloc (aggloc | agglink | nagg) nagg
>

105 <!ELEMENT relloc - O (dimlist*) >
<!ATTLIST relloc
 HyTime NAME relloc
 id ID #REQUIRED
 root IDREFS #IMPLIED
 relation (anc | esib | ysib | des | parent | children) parent
 overrun (error | wrap | trunc | ignore) error
 locsrc IDREFS #IMPLIED
 ordering (ordered | noorder) noorder
 set (set | notset) notset
 aggloc (aggloc | agglink | nagg) nagg
>

106 <!ELEMENT dataloc - O (dimlist*) >
<!ATTLIST dataloc
 HyTime NAME dataloc
 id ID #REQUIRED

MID-2 (3/96)37

 quantum (str | norm | word | name | sint | date | time | utc) str
 catsrc (catsrc | nocatsrc) nocatsrc
 catres (catres | nocatres) nocatres
 overrun (error | wrap | trunc | ignore) error
 locsrc IDREFS #IMPLIED
 ordering (ordered | noorder) noorder
 set (set | notset) notset
 aggloc (aggloc | agglink | nagg) nagg
>

107 <!ELEMENT marklist O O (marklist | #PCDATA)* >
<!ATTLIST marklist
 HyTime NAME marklist
>

108 <!ELEMENT dimlist O O (dimlist | marklist | #PCDATA)* >
<!ATTLIST dimlist
 HyTime NAME dimlist
>

109 <!ELEMENT proploc - O (qpn | #PCDATA) >
<!ATTLIST proploc
 HyTime NAME proploc
 id ID #REQUIRED
 joint (joint | several) several
 apropsrc (apropsrc | solesrc) solesrc
 notprop (error | empty | ignore) ignore
 locsrc IDREFS #IMPLIED
 ordering (ordered | noorder) noorder
 set (set | notset) notset
 aggloc (aggloc | agglink | nagg) nagg
>

110 <!ELEMENT qpn - O (pn, spec?)+ >
<!ATTLIST qpn
 HyTime NAME qpn
 id ID #REQUIRED
>

111 <!ELEMENT pn - O RCDATA >
<!ATTLIST pn
 HyTime NAME pn
>

112 <!ELEMENT spec - O ((qpn | qltn)+ | pval) >
<!ATTLIST spec
 HyTime NAME spec
>

MID-2 (3/96)38

113 <!ELEMENT qltn - O RCDATA>
<!ATTLIST qltn
 HyTime NAME qltn
>

114 <!ELEMENT pval - O RCDATA >
<!ATTLIST pval
 HyTime NAME pval
>

115 <!ELEMENT notloc - O ANY >
<!ATTLIST notloc
 HyTime NAME notloc
 id ID #REQUIRED
 qdomain IDREFS #IMPLIED
 qcontext IDREF #IMPLIED
 fn NAME #IMPLIED
 usefn NAME #CONREF
 args CDATA #IMPLIED
 ordering (ordered | noorder) noorder
 set (set | notset) notset
 aggloc (aggloc | agglink | nagg) nagg
>

116 <!ELEMENT bibloc - O ANY >
<!ATTLIST bibloc
 HyTime NAME bibloc
 id ID #REQUIRED
 qdomain IDREFS #IMPLIED
 qcontext IDREF #IMPLIED
 fn NAME #IMPLIED
 usefn NAME #CONREF
 args CDATA #IMPLIED
>

MID-2 (3/96)

39

7. Alphabetical index of elements

Element Ref
(arithmetic operator elements) 70
alert 14
animation 37
append 90
argdecl 61
argument 69
assign 67
audio 37
bibloc 116
break 74
button 25
buttonGroup 48
car 88
case 75
cdr 89
chain 12
clientArea 17
conditionalPane 51
CONDITIONALS 50
conditionalWidget 52
cons 87
constant 71
constantType - ENTITY 7
CONTAINERS 10
continue 74
CONTROLS 22
count 93
DATA TYPES 29
dataloc 106
DECLARATIONS 58
default 75
dimlist 108
dynamicList 27
ENTITIES 4
ENTITY % locs 5
event 43
evsched 42
expr 65
EXTERNAL NOTATIONS 36
EXTERNAL PROCESS 94
extlist 43
fcsTable 40
fillin 26
fold 82
funcdecl 60
function 68
functionType - ENTITY 7
get 20
gettype 77
gosub 19
goto 19
granule 44
graphic 37
HyQ 103
HYTIME 98
HyTime location types 100
icon 37
if, else 72
infoContainer 11
islist 91
isnull 83
isstring 84
item 35
jump 76

label 28
list 86
LIST OPERATIONS 85
listOperations - ENTITY 64
locs 5
loop 73
marklist 107
measure 44
menu 23
menubar 49
messageArea 16
MID 8
mid 9
name 56
nameloc 101
nmlist 102
NOTATION HyQ PUBLIC 3
NOTATION HyTime PUBLIC 3
NOTATION SGML PUBLIC 3
NOTATION virspace PUBLIC 3
NOTATIONS 2
not 70
notloc 115
nth 92
orderedList 34
pane 13
paneGroup 46
paragraph 33
pn 111
pool 15
primitives - ENTITY 6
proploc 109
PUBLIC - MID DTD 1
pval 114
qltn 113
qpn 110
reflow 53
relationship 21
relloc 105
return 97
script 55
SCRIPTING 54
scriptLabel 76
security 99
SEMANTIC GROUPING 45
setState 24
spawn 19
spec 112
specialText 31
specialTextTypes - ENTITY 31
statements 57
strcat 81
STRING and LIST OPERATIONS 62
STRING OPERATIONS 78
stringOperations - ENTITY 63
strlen 79
substr 80
switch 75
TABLE ELEMENT TYPES 38
tableTypes - ENTITY 39
text 30
title 32
TRANSITIONS & LINKS 18
treeloc 104
unorderedList 34
vardecl 59
variable 66
variableType - ENTITY 7
video 37
widgetGroup 47

MID-2 (3/96)

40

x, y 41
xeno 96
xenodecl 95

MID-2 (3/96)

41

8. Summary of changes since original release of MID

This is a condensed and summarized list of changes that have been implemented in the MID DTD as a result of the
1995 design and development efforts.

Containers
infoContainer

• menubar collected by IDREF

• Added local pool for variables scoped to the infoContainer

• Has return type

endic

• Removed endic element that used to indicate when to close an infoContainer. Now we have a generalized
return element for use in scripting, with a type that indicates which construct is ending. This removes an
artifical distinction between return and endic, and requires fewer tags for the same functionality.

chain

• Added chain to allow author to specify a sequence of infoContainers that should not be entered in the
middle. This is to be used e.g., in a procedure where users should proceed in order through a series of
procedural steps for safety or other reasons.

popupDialog, footerbar

• Consolidated into pane, as these are just special cases of panes.

pane

• Removed 1,2,3,4 for pane numbering - paneGroup now allows more general specification of how panes
should be semantically grouped, rather than how they should be ordered.

• Added function type and id to attribute list.

alert

• Moved "alerttype" to attribute.

• Removed hotspot restriction.

• added alert to clientarea element

appGlobals

• Application globals became main pool in <mid> element.

clientArea

• Changed to allow more than 4 panes, which can be grouped. See footer bar comment below for how to
make footer bar. messageArea is retained and can be set in a script. The original script was really for
"process panes" which are now handled through xeno in an infoContainer

footerBar

• Deleted footerBar element. Footer bar can be rendered as a pane with a buttongroup.

messageArea

• Added "expr"

poolContainer

MID-2 (3/96)

42

• Deleted; replaced by the "pool" element which allows for additional reusable components.

popupDialog

• Deleted; now handled by pane with transition type

Transitions & Links
relationship

• Added example architechtural form for elements that are to be used for hotspots and hypermedia webs
across documents.

hotspot

• Deleted; now handled by relationship

grotspot

• Graphic hotspot element was deleted. This was a temporary element used in MID Phase 1 examples. The
function performed by the grotspot can be accomplished using the relationship element.

spawn

• This is a new element type that allows a script to launch an infoContainer whose scope is maintained
simultaneously with the present scope.

Controls
PickOne and pickMany

• merged into dynamicList with attribute to represent pickOne or pickMany

• pickmany and pickone (deleted. became attribute on buttongroup)

• put info on the button

button

• labels can now contain icons instead of graphics

• defaults in “buttongroup” can be used to define a “default” button

dynamiclist

• element added to allow for assignment of value to a varible based on selection of one or more items from a
list

fillin

• added required label. Attribute for echo of user input was added.

is default

• removed from DTD, replaced by “default” attribute for buttongroup element

label

• allow use of icon for label

• reduced scripting capability

setState

• can now adjust menus on the fly

MID-2 (3/96)

43

menu

• added attrbiutes id and enable

menu item

• removed become "button" on "menubar"

menu text

• removed became "label" on "button" on "menubar

prompt

• removed

user interaction

• removed became widgetgroup

Data Types
specialText

• added special text

• emphasis (deleted. became specialtext)

• redefined as necessary text or special types

default text

• removed

fcsTable

• added fcs table types, commented example arch form

table types

• added as a overridable entity for allowed table types. Allows for any table type such as CALS

Removed explicit graphic elements

Removed explicit CALS table

animation

• attribute for id added

array

• removed, replaced by list element

graphic primitive

• removed

paragraph

• changed. "emphasis" is now "specialtext", lists have been added.

title bar

deleted. became title

Semantic Grouping
paneGroup

MID-2 (3/96)

44

• added to allow for grouping of like panes such as in a procedure

 widgetGroup

• widget group (new) replaces userinteraction

Conditionals
Added the following new elements:

• conditionalPane

• conditionalWidget

• reflow (for conditionals)

Scripting
Scripts

• has return type

name (changed. end-tagging, added "expr")

variables

• moved types into attribute values

• variable declaration (changed. arrays became lists in expression. type is in attribute)

string

• added string expressions

• is null (new)

list

• added list expressions

(get | script | #PCDATA)*

• changed to (get|expr|#PCDATA)*

Defined scopes more carefully

argument declarations (changed. moved type to attribute)

assign (essentially unchanged. variable became "name")

constant (changed. added "get" ability and "type" in attribute)

expression (changed. abbreviated to expr. string and list operations added via entity)

fold (new)

funcdecl (changed. "type" moved to attribute list)

gettype (new. returns "type")

not equal (changed. locked down to two (2) "expr")

return (changed. attribute list added)

• Added type attribute to <return >; the type tells which construct is ending, be it a function, script, pane,
infoContainer, chain, or mid.

MID-2 (3/96)

45

script (changed. attribute list added)

External Processes
• graphic (changed to external process)

• icon (changed. behaves now like graphic)

• xeno func (deleted. became a call to a function declared by a "xenodecl")

• xenofunc (removed <xenofunc > as a call to a xenodecl. <function > may be used to call both funcdecls and
xenodecls.

HyTime Location & Linking
removed locContainer

location container (deleted. became "pool")

HyTime & SGML Management
security

• added security as HyTime activity to the mid and pane

Support

• invented support keywords

Structural changes:
• Rearranged grouping of elements

• Set SGML NAMECASE GENERAL NO

• Enforced mixedCapitals

• Defined parameter entities %locs, %primitives, %functionTypes, %specialTextTypes

• Attribute "type %functiontypes;..." replaced " type" element

• Element “specialText” with associated attribute “specialTextTypes” replaces element “ emphasis” as a more
general case

documentation

• cleaned and honed documentation

• regularized expression of comments

• the MID DTD stands more on its own

mid element

• collapsed various buckets into single pool

• has return type

MID-2 (3/96)

A-1

Appendices
A. Processable MID DTD
<!SGML “ISO8879:1986”

CHARSET BASESET “ISO 646-1983//CHARSET International
Reference Version

(IRV)//ESC 2/5 4/0” --2/5 was 2/8--

DESCSET 0 9 UNUSED

 9 2 9

 11 2 UNUSED

 13 1 13

 14 18 UNUSED

 32 95 32

 127 1 UNUSED

BASESET “ISO Registration Number 100//CHARSET ECMA-94

 Right Part of Latin Alphabet Nr. 1//ESC 2/13 4/1”

DESCSET 128 32 UNUSED

 160 5 32

 165 1 UNUSED

 166 8 38

 254 1 127

 255 1 UNUSED

CAPACITY SGMLREF

TOTALCAP 175000

GRPCAP 70000

ATTCAP 50000

SCOPE DOCUMENT

SYNTAX

SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 18 19 20 21 22 23 24 25 26 27 28 29 30 31 127 255

BASESET “ISO 646-1983//CHARSET International Reference Version

(IRV)//ESC 2/5 4/0”

DESCSET 0 128 0

FUNCTION RE 13

 RS 10

 SPACE 32

 TAB SEPCHAR 9

NAMING LCNMSTRT “”

 UCNMSTRT “”

 LCNMCHAR “-.”

 UCNMCHAR “-.”

 NAMECASE GENERAL YES

 ENTITY NO

DELIM GENERAL SGMLREF

 SHORTREF NONE --short references disabled for time being--

NAMES SGMLREF

QUANTITY SGMLREF LITLEN 2048

 NAMELEN 32

 ATTCNT 80

 GRPCNT 80 --used default value of 32 before--

FEATURES

MINIMIZE DATATAG NO OMITTAG YES RANK NO

SHORTTAG YES -- SHORTTAG NO no CALS SGML Declaration.
Considered desirable

to minimize MID instances. --

LINK SIMPLE NO IMPLICIT NO EXPLICIT NO

OTHER CONCUR NO SUBDOC NO FORMAL YES

APPINFO “HyTime”

>

<?HyTime VERSION “ISO/IEC 10744:1992” HYQCNT=32>

<?HyTime MODULE base exidrefs>

<?HyTime MODULE measure>

<?HyTime MODULE locs anydtd coordloc HyQ multloc query relloc>

<?HyTime MODULE links manyanch>

MID-2 (3/96)

A-2

<!--

 MID: Metafile for Interactive Documents

 Document Type Definition

This document type definition shall be identified by the following
declaration:

 PUBLIC "-//MID//DTD MID Document Type Definition 19951201//EN"

-->

<!-- NOTATIONS -->

<!NOTATION SGML PUBLIC

"+//ISO 8879:1986//NOTATION Standard Generalized Markup
Language//EN" >

<!NOTATION HyTime PUBLIC

"+//ISO/IEC 10744:1992//NOTATION Hypermedia/Time-based
Structuring Language//EN" >

<!NOTATION HyQ PUBLIC

"+//ISO/IEC 10744:1992//NOTATION HyTime Query Notation//EN" >

<!NOTATION virspace PUBLIC

"+//ISO/IEC 10744:1992//NOTATION Virtual Measurement Unit//EN" >

<!-- ENTITIES -->

<!-- locs

 These are the HyTime Location addresses used by the MID. -->

<!ENTITY % locs "nameloc | treeloc | dataloc | notloc | proploc | relloc |
bibloc"

>

<!-- primitives, functionType, variableType, constantType

 The MID script primitives are listed in the entities below. The

application may choose to override these declarations to extend or

constrain the MID definition. An atom is string or any one of the

primitives. -->

<!ENTITY % primitives "boolean | int32 | uint32 | int64 | uint64 | float32 |

float64 | sgmlchar" >

<!ENTITY % functionTypes "%primitives | string | atom | list | any | void"
>

<!ENTITY % variableTypes "%primitives | string | atom | list | any" >

<!ENTITY % constantTypes "%primitives | string" >

<!-- MID -->

<!-- mid

 The mid element is the document element for a mid application. The

vardecls, funcdecls, and xenodecls in its immediate content are global

declarations to the MID application. The MID instance is processed by

first processing the global declarations and then the master script.

The MID returns the results of evaluating its master script. The type

of the resulting data is given as the value of the functionType

attribute. This specification is redundant and is made solely for

convenience. It is a reportable MID error (RME) if the type of the

return value of the master script does not match the return value of

the MID.

Date and version hold human-readable strings for specifying the date

and version of this document.

The docmdu attribute specifies the measurement domains of the

document's finite coordinate spaces (fcs) and the least common unit

for computing dimensions in each fcs.

The security attribute identifies the security designation for this

MID document. Security is implemented as a HyTime activity policy.

The following are support options for the support statement. The

names may be listed in any order.

conditionalPane

 This document may contain conditional panes.

conditionalWidget

 This document may contain conditional widgets.

fcsTable

 This document may contain MID fcs tables.

list

 If list is specified, this document may use the list data structure

and the list expressions. If list is not specified, list must be

deleted from the functionTypes and variableTypes parameter entities.

MIL-M-87268

 This document is intended to be used in connection with software

whose user interface strictly conforms to MIL-M-87268.

nonMID

 This document may contain addresses of locations in external

SGML/HyTime documents which are not MID documents.

query

MID-2 (3/96)

A-3

 This document may contain queries which address locations in

external SGML/HyTime documents which are not MID documents. If
query

support is specified, nonMID support is implied.

relationship

 This document may contain MID relationship forms.

 spawn

 If spawn is specified, this document may contain spawn elements.

string

 If string is specified, this document may use the string data

structure and the string expressions. If string is not specified,

string must be deleted from the functionTypes and variableTypes

parameter entities.

xeno

 If xeno is specified, this mid document may use the xenodecl and

xeno elements. All data content notations must be declared using

notation declarations in the DTD.

-->

<!ELEMENT mid - O ((vardecl | funcdecl | xenodecl)*, script, pool?) >

<!ATTLIST mid

 HyTime NAME #FIXED HyDoc

 id ID #IMPLIED

 functionType (%functionTypes;) atom

 date CDATA #IMPLIED

 version CDATA #IMPLIED

 docmdu CDATA #FIXED "virspace 1 1"

 HyNames CDATA "activity security"

 security IDREFS #IMPLIED

 support NAMES "conditionalPane conditionalWidget fcsTable list

 MIL-M-87268 nonMID query relationship spawn string xeno"

>

<!-- CONTAINERS -->

<!-- infoContainer

 When an infoContainer is accessed, its declarations are processed.

The menubar is built from the list of menubars given in the attribute

value, then the script (which may contain adjustments to the menubar

in setState commands) is executed. After this, the title, alert, and

clientArea are processed in the order they appear. The functionType

attribute specifies the return type of this construct.-->

<!ELEMENT infoContainer - O ((vardecl | funcdecl | xenodecl)*, script?,
title?,

alert*, clientArea, pool?) >

<!ATTLIST infoContainer

 id ID #IMPLIED

 menubar IDREFS #IMPLIED

 functionType (%functionTypes;) atom

>

<!-- chain

 Access to infoContainers within a chain is restricted to

infoContainers within that chain. When a chain is accessed, its first

contained infoContainer is processed. -->

<!ELEMENT chain - O (infoContainer)* >

<!ATTLIST chain

 id ID #IMPLIED

>

<!-- tableTypes

 The table entity is used to allow the application to substitute any

table type into the pane declaration.-->

<!ENTITY % tableTypes "fcsTable" >

<!-- pane

 A pane is a single user interface presentation, which is rendered

when it is encountered. A pane encapsulates a scope. A get within a

pane causes the target to be rendered on this pane. Scripts within

panes are run when the pane is rendered. The return value of the script

is the return value of the pane. It is a RME if the type of the pane

and the containing script are not the same. A pane is modeless when

contained in a client area or when called from spawn. A pane is modal

when called from gosub.

The security attribute identifies the security designation for this

pane. Security is implemented as a HyTime activity policy.

-->

<!ELEMENT pane - O ((vardecl | funcdecl | xenodecl)*, title?,

(text | %tableTypes; | graphic | audio | video | animation | widgetGroup |
get |

script)) >

<!ATTLIST pane

 id ID #IMPLIED

MID-2 (3/96)

A-4

 functionType (%functionTypes;) atom

 HyNames CDATA "activity security"

 security IDREFS #IMPLIED

>

<!-- alert

 An alert represents a modal popup window with the contained

information. The contents of the alert are evaluated and rendered in

the order they are encountered. The alert is popped down when a

return alert statement is encountered in the button script. The type

attribute indicates the semantic of the alert. -->

<!ELEMENT alert - O (title?, icon*, text, button) >

<!ATTLIST alert

 id ID #IMPLIED

 type (warning | caution | note) note

>

<!-- pool

 Elements in the pool are not rendered until they are requested by

identifier reference. The scope of all resolution of variables, etc.,

is always specified lexically, i.e., variables referenced in the pool

are valid or invalid with respect to the containing scope (mid or

infoContainer), not with respect to the caller's state. Among other

things, the pool may contain elements of the following types: HyTime

location address, HyTime hyperlink, chain, infoContainer, menubar,

pane, alert. -->

<!ELEMENT pool - O ANY >

<!-- messageArea

 The contents will be evaluated and concatenated in the order in

which they appear and the results will be rendered by the application

as a "message area" message. -->

<!ELEMENT messageArea - O (get | expr | #PCDATA)* >

<!-- clientArea

 A client area is the container for panes, pane groups, and

conditional panes. The panes are rendered in the order they are

encountered.

NOTE: In an 87268 implementation, the last child of a client area must

be a widget group pane. This pane is the footer bar. The members of

the widget group may only be buttons. The label for the widget group

will not be rendered. -->

<!ELEMENT clientArea - O (pane | paneGroup | conditionalPane |
alert)* >

<!-- TRANSITIONS & LINKS -->

<!-- gosub, goto, spawn

 Expresses a HyTime hyperlinks with specific MID script traversal

semantics.

Gosub indicates that the state of the current infoContainer be saved

and the target object rendered. Gosub targets may be of the following

types: infoContainer, chain, pane, conditionalPane, alert, mid. Gosub

is forbidden to an infoContainer that is nested in another chain.

Gosub is forbidden to a pane or conditionalPane that is nested in

another infoContainer's client area or pane group.

Goto indicates that the current infoContainer be abandoned immediately

and the new infoContainer launched. Goto targets may be of the

following types: chain, infoContainer, mid. Goto is forbidden to an

infoContainer nested in another chain. Return values from objects

which are targets of goto are lost, because there is nothing waiting

on the returned value. A goto which targets this MID document is

equivalent to a restart of this MID document.

Spawn indicates that control flow splits. Spawned targets may be of

the following types: infoContainer, chain, pane, conditionalPane,

alert, mid. Both parent and child compete for focus in the

application display space. Spawn is forbidden to an infoContainer

nested in another chain. Spawn is forbidden to a pane nested in a

client area. Return values from spawned objects are lost, because

there is nothing waiting on the returned value. When a spawn is

encountered, control stops in the calling script, the target is flowed

until it reaches an idle state, then the caller continues until it

reaches an idle state. -->

<!ELEMENT (gosub | goto | spawn) - O (%locs;)*>

<!ATTLIST (gosub | goto | spawn)

 HyTime NAME ilink

 HyNames CDATA "linkends target"

 anchrole CDATA "me target"

 target IDREF #REQUIRED

>

<!-- get

 Get expresses that the information at the source be collected,

concatenated, and rendered at the point of the get.

If space is specified, the members of a target aggregate will be

MID-2 (3/96)

A-5

delimited by a single space before the data is concatenated. If

normalize is specified, leading and trailing white space is removed,

and multiple contiguous spaces are converted into a single space. -->

<!ELEMENT get - O (%locs;)*>

<!ATTLIST get

 HyTime NAME ilink

 anchrole CDATA "me source #AGG"

 HyNames CDATA "linkends source"

 source IDREF #REQUIRED

 space (space | noSpace) space

 normalize (normalize | noNormalize) noNormalize

>

<!-- relationship

 The relationship form conforms to the architecture for a HyTime

ilink. It expresses an authored relationship between two identified

objects. The application must provide its own element and attribute

declarations for hyperlinking according to the HyTime standard. This

pseudo-declaration is provided as a model for the HyTime ilink. The

generic identifier of the relationship governs the relationship

semantic.

The traversal semantic of the relationship is governed by the

traversal attribute. If traversal is set to be undefined, traversal

decisions will be left up to the application.

Attributes may be added to change traversal from hotspot marking

(interrupt) to hotspot information by request only (polling). This

would prevent hotspot clutter in an on-line index, for example.

<!ELEMENT relationship - O (title, %locs;*) >

<!ATTLIST relationship

 HyTime NAME ilink

 id ID #IMPLIED

 relationshipName #CDATA #FIXED

 anchrole CDATA #FIXED "antecedent #AGG consequent #AGG"

 linkends IDREFS #REQUIRED

 extra NAMES #IMPLIED

 intra NAMES #IMPLIED

 endterms IDREFS #IMPLIED

 aggtrav NAMES agg

 MID NAME #FIXED relationship

 privTrav NAMES #IMPLIED

 traversal (gosub | spawn | goto | undefined) spawn

>

-->

<!-- CONTROLS -->

<!-- menu

 This element declares a named and labeled menu of menus and menu

items. If disable is specified, the menu label will be visible but

the menu will be inaccessible ("grayed out"). The menu will be

rendered when its label is selected from a rendered parent menu or

menubar. -->

<!ELEMENT menu - O (label, (menu | button | buttonGroup)*) >

<!ATTLIST menu

 id ID #IMPLIED

 enable (enable | disable) enable

>

<!-- setState

 This element indicates that the state of the target object should be

modified according to the attributes and content specified. Possible

targets: menubar, menu, button, buttonGroup. More complicated

substitutions should use the functionality provided by

conditionalWidget.

The toggle attribute tells whether the target should be toggled on,

toggled off, that the toggle should be removed, or that no change to

the toggle should take place.

The enable attribute tells whether the target should be enabled or

disabled ("grayed out") or that no change should be made.

The action attribute tells whether to modify the target, to remove the

target from its position, or to reset the target to its initial

settings.

The content attribute tells how to treat the content of the setState

element. The subelements may be inserted before the target, after the

target, or replace the target entirely. Replacing items on the menubar

with a buttonGroup is not allowed. -->

<!ELEMENT setState - O (menu | button | buttonGroup)* >

<!ATTLIST setState

 target IDREFS #REQUIRED

 toggle (toggleOn | toggleOff | removeToggle | noToggleChange)
noToggleChange

 enable (enable | disable | noEnableChange) noEnableChange

 action (modify | remove | reset) modify

 content (insertBefore | insertAfter | replace) replace

>

MID-2 (3/96)

A-6

<!-- button

 A button represents a user interface activation control. The script

is run when the button is activated. If specified, the name of the

button must be unique within a button group. If toggleOn is

specified, the button is rendered with a "toggled on" representation.

If toggleOff is specified, the button is rendered with a "toggled off"

representation. If disable is specified, the button will be visible

but it will be inaccessible ("grayed out"). -->

<!ELEMENT button - O (label?, script) >

<!ATTLIST button

 id ID #IMPLIED

 name NAME #IMPLIED

 toggle (toggleOn | toggleOff | noToggle) noToggle

 enable (enable | disable) enable

>

<!-- fillin

 A fillin represents a fill-in-the-blank widget. The initial value

of the variable provides the initial text. When noEcho is

specified, the user's input is not echoed to the display (e.g., for

entering passwords). -->

<!ELEMENT fillin - O (label, variable) >

<!ATTLIST fillin

 id ID #IMPLIED

 echo (echo | noEcho) echo

>

<!-- dynamicList

 A dynamicList represents a widget which allows a user to assign a

value to a variable. When encountered, the label is rendered to name

the widget. The expr is evaluated; the results become the option

list, and the option list is rendered. If notRestricted is specified,

the user may enter a value which is not on the option list. The

script gets run when the user makes a selection. -->

<!ELEMENT dynamicList - O (variable, label?, expr, script?) >

<!ATTLIST dynamicList

 type (pickOne | pickMany) pickOne

 restricted (restricted | notRestricted) notRestricted

>

<!-- label

 A label is made up of any combination of retrieved text, the results

of evaluation of expressions, parsed character data, and icons. It is

rendered when its container is rendered, in such a way as to preserve

the semantic of grouping.-->

<!ELEMENT label - O (get | expr | #PCDATA | icon)* >

<!-- PRIMITIVES & DOCUMENT STRUCTURE -->

<!-- text

 Groups text items. -->

<!ELEMENT text - O (get | expr | #PCDATA | specialText | title |
paragraph |

orderedList | unorderedList)* >

<!ATTLIST text

 id ID #IMPLIED

>

<!-- specialTextTypes

 Lists the types of text which are recognized as special. -->

<!ENTITY % specialTextTypes

"visualPunch | foreignWord | semanticStress | newTerm |
bibliographicReference |

wordAsWord | wordAsDefinition | informalName | properObject |
mathExpression |

acronymExpansion | anchor | none" >

<!-- specialText

 Indicates that the contained text is qualified by some semantic.

-->

<!ELEMENT specialText - O (get | expr | #PCDATA | specialText)* >

<!ATTLIST specialText

 id ID #IMPLIED

 type (%specialTextTypes;) none

>

<!-- title

 Title indicates the title of the object which contains it. It is

always to be rendered in such a way as to indicate that association.

The contents of the title element are evaluated and concatenated in

the order that they appear. -->

<!ELEMENT title - O (get | expr | #PCDATA | specialText)* >

<!-- paragraph

 Indicates the contained text is regarded and rendered as a

paragraph. -->

<!ELEMENT paragraph - O (get | expr | #PCDATA | specialText)* >

MID-2 (3/96)

A-7

<!ATTLIST paragraph

 id ID #IMPLIED

>

<!-- orderedList, unorderedList

 These represent two types of list. An ordered list is typically

rendered with ascending identifying numbers, letters, etcetera. An

unordered list is typically rendered with bullets instead. Items in

either kind of list must be rendered in the order they appear

lexically. -->

<!ELEMENT (orderedList | unorderedList) - O (title?, item+) >

<!ATTLIST (orderedList | unorderedList)

 id ID #IMPLIED

>

<!-- item

 Represents a list item. -->

<!ELEMENT item - O (get | expr | #PCDATA | specialText | orderedList |

unorderedList)* >

<!-- EXTERNAL NOTATIONS -->

<!-- icon, graphic, audio, video, animation

 Access to external notations is made from these elements. -->

<!ELEMENT (icon | graphic | audio | video | animation) - O (get | expr)*
>

<!ATTLIST (icon | graphic | audio | video | animation)

 id ID #IMPLIED

>

<!-- TABLE ELEMENT TYPES -->

<!-- tableTypes

 The table entity is used to allow the application to substitute any

table type into the pane declaration.-->

<!ENTITY % tableTypes "fcsTable" >

<!-- fcsTable

 The fcsTable conforms to the HyTime finite coordinate space. It

expresses the abstract layout of a table without imposing assumptions

about how the tabular information will be rendered or used. To

implement fcs tables, applications must implement the following

architectural forms as required by the HyTime standard: fcs, evsched,

axis, event, extlist, measure, granule. The element declarations

below are provided as examples that conform to the needed HyTime

architectural forms; they will be recognized by conforming HyTime

engines.

The fcsTable element contains event schedules. Its axisdefs attribute

lists the generic identifiers of the axes that make up the space. The

event elements contained in evscheds are scheduled on each of the
axes

of the fcs.

-->

<!ELEMENT fcsTable - O (evsched+) >

<!ATTLIST fcsTable

 HyTime NAME fcs

 MID NAME fcsTable

 id ID #IMPLIED

 axisdefs CDATA #FIXED "x y"

>

<!--

Each axis is declared with a specific measurement domain (here,

virspace) and with a specified dimension.

Specific axes with specific axis dimensions must be declared for each

instantiation of table type. The fcsTable and the evsched refer to

the generic identifier of the desired axis.

NOTE: The axis dimensions "4" and "5" are example dimensions.

Particular tables may have any dimension required, theoretically up to

the the high quantum count value in HyTime.

-->

<!ELEMENT x - O EMPTY >

<!ATTLIST x

 HyTime NAME axis

 MID NAME axis

 axismeas CDATA #FIXED "virspace"

 axisdim CDATA #FIXED "4"

>

<!ELEMENT y - O EMPTY >

<!ATTLIST y

 HyTime NAME axis

 MID NAME axis

 axismeas CDATA #FIXED "virspace"

 axisdim CDATA #FIXED "5"

>

MID-2 (3/96)

A-8

<!--

The axisord attribute of the evsched element type dictates the order

in which dimension specifications are to be listed in the extent list

extlist of every event: first the spec for x, then the spec for y.

The #FIXED value of the basegran attribute of evsched establishes a

base measurement unit for scheduling, in this case a "virtual space

unit" (vsu).

-->

<!ELEMENT evsched - O (event)* >

<!ATTLIST evsched

 HyTime NAME evsched

 MID NAME evsched

 id ID #IMPLIED

 axisord CDATA #FIXED "x y"

 basegran CDATA #FIXED "vsu"

 gran2hmu NUMBERS #FIXED "1 1"

 overrun (error | wrap | trunc | ignore) error

>

<!-- event, extlist

 The event and extlist elements are used by fcs but do not require

specific-case architectural form initialization. They may be used as

they appear below. -->

<!ELEMENT event - O (get | expr | #PCDATA)* >

<!ATTLIST event

 HyTime NAME event

 id ID #IMPLIED

 exspec IDREFS #REQUIRED

>

<!ELEMENT extlist - O (#PCDATA) >

<!ATTLIST extlist

 HyTime NAME extlist

 id ID #IMPLIED

>

<!-- measure, granule

 The evsched element form requires a measure definition to occur

somewhere in the document. The following one is an minimal example.

<measure smu=VIRSPACE>

 <granule gn=vsu gd="1 1 VIRSPACE">

</measure>

-->

<!ELEMENT measure - O (granule+) >

<!ATTLIST measure

 HyTime NAME measure

 id ID #IMPLIED

 smu NAME #REQUIRED

>

<!ELEMENT granule - O EMPTY>

<!ATTLIST granule

 HyTime NAME granule

 gn CDATA #REQUIRED

 gd CDATA #REQUIRED

>

<!-- SEMANTIC GROUPING -->

<!-- paneGroup

 Panes are grouped with some semantic intention of the author. They

are rendered with a title when encountered.-->

<!ELEMENT paneGroup - O (title?, (pane | paneGroup |
conditionalPane)*) >

<!ATTLIST paneGroup

 id ID #IMPLIED

>

<!-- widgetGroup

 A widgetGroup is an optionally labeled group of widgets. All of its

contents are rendered when encountered. The optional script is run

after rendering the widget group, in order that setState may be called

to set the toggled wigets. -->

<!ELEMENT widgetGroup - O (label?,

(widgetGroup | conditionalWidget | buttonGroup | dynamicList | button |
fillin)*,

script?) >

<!-- buttonGroup

 Represents a labeled group of buttons. The semantic of the grouping

is expressed in the type attribute. An indication of pickOne means

only one button in the group may be selected. An indication of

pickMany means any number may be selected. If a default is specified,

the named buttons are preselected. If no default is specified and the

type is pickOne, the first button is preselected. -->

MID-2 (3/96)

A-9

<!ELEMENT buttonGroup - O (label?, button*) >

<!ATTLIST buttonGroup

 id ID #IMPLIED

 type (pickOne | pickMany | button) button

 default NAMES #IMPLIED

>

<!-- menubar

 This element declares a menu bar as a collection of menus and

buttons. The menubar will be rendered when an infoContainer that

points to it via its menubar attribute is rendered.-->

<!ELEMENT menubar - O (menu | button)+ >

<!ATTLIST menubar

 id ID #IMPLIED

>

<!-- CONDITIONALS -->

<!-- conditionalPane

 When a conditionalPane is encountered, the expression is evaluated.

Each successive expression is evaluated until one is equal to the

first. The pane group corresponding to the match is rendered. If no

expressions match, the final pane group, if present, is rendered as a

default. This construct is reevaluated when a reflow command is

issued for this element or an element in the proper ancestry of this

element.

NOTE: Conditional panes are intended to be used for alternate displays

of panes, as in alternate language presentation, rather than to

implement 269 preconditions; a conditional pane is not intended to be

the implementation of an if-step, nor is it intended to allow an

entire interactive electronic technical manual to be implemented with

a single infoContainer. -->

<!ELEMENT conditionalPane - O (expr, (expr, paneGroup)*,
paneGroup?) >

<!ATTLIST conditionalPane

 id ID #IMPLIED

>

<!-- conditionalWidget

 When a conditionalWidget is encountered, the first contained

expression is evaluated. Each successive contained expression is

evaluated, in order, until one is equal to the first. The widget

group corresponding to the match is rendered. If no expressions

match, the final contained widget group (if present) is rendered as a

default. -->

<!ELEMENT conditionalWidget - O (expr, (expr, widgetGroup)*,
widgetGroup?) >

<!ATTLIST conditionalWidget

 id ID #IMPLIED

>

<!-- reflow

 When a reflow is encountered, the entire subtree of the target of

the reflow statement is rendered again. The target must be something

in the current infoContainer, and all current states within the scope

of the infoContainer will be respected. When no target is specified,

the entire current infoContainer will be rendered again. If multiple

targets are specified they are rendered again in the order given. -->

<!ELEMENT reflow - O EMPTY >

<!ATTLIST reflow

 target IDREFS #IMPLIED

>

<!-- SCRIPT ELEMENT TYPES -->

<!-- script

 Scripts are evaluated depending on their context. First the

declarations are evaluated, then the statements. The return type for

the script is specified using the functionType attribute. -->

<!ELEMENT script - O ((vardecl | funcdecl | xenodecl)*, statements) >

<!ATTLIST script

 id ID #IMPLIED

 functionType (%functionTypes;) atom

>

<!-- Declarations

 Declarations are processed and bound to the declared names in the

order the declarations are encountered. If a variable declaration

initializer contains a reference to another variable, the other

variable must have been declared and initialized prior to the

referring declaration. -->

<!-- vardecl

 The vardecl element binds a name to a run-time storage location.

Variables must be declared before use. The expr initializes the

variable. The variableType attribute specifies the type of the

variable. Every variable type has a default initialization: zero for

integer and float types, false for boolean, and null for list and

string. The default sgmlchar is zero. A local name which is the same

as a name declared higher in the scope stack renders the higher named

MID-2 (3/96)

A-10

object unreferenceable (the local name is said to "shadow" the higher

one). -->

<!ELEMENT vardecl - O (name, expr?) >

<!ATTLIST vardecl

 variableType (%variableTypes;) string

>

<!-- funcdecl

 The funcdecl element binds a function name with argument list, local

state and statement list. Vardecl names shadow argdecl names. The

number of arguments, their types, and their order are always fixed.

The functionType attribute specifies the return type of the function.

-->

<!ELEMENT funcdecl - O (name, argdecl*, vardecl*, statements) >

<!ATTLIST funcdecl

 functionType (%functionTypes;) atom

>

<!-- argdecl

 The argdecl element binds an argument name to a passed value.

Arguments to functions are passed by value. -->

<!ELEMENT argdecl - O (name) >

<!ATTLIST argdecl

 variableType (%variableTypes;) string

>

<!-- name

 The name of a function, variable, xenodecl, or scriptLabel is

created by evaluating the contained elements in the order they appear

and concatenating the results.

After the data is concatenated, leading and trailing whitespace

characters are ignored, and multiple whitespace characters are

replaced by a single space. SGML NAME characters are folded
according

to the NAMECASE GENERAL parameter of the governing SGML
declaration.

-->

<!ELEMENT name O O (get | expr | #PCDATA)* >

<!-- statements

 Statements are evaluated as directed by the context, in the order

they appear.

NOTE: Although the absence of this container would not create

ambiguities in the MID language (i.e., this container is redundant),

it is provided as a convenience to MID script interpreters. -->

<!ELEMENT statements O O

(expr | if | loop | break | switch | jump | scriptLabel | goto | spawn

| return | reflow | messageArea | setState)* >

<!-- stringOperations

 The operations specific to string manipulation are collected here.

-->

<!ENTITY % stringOperations "strlen | substr | strcat | fold | isstring"

>

<!-- listOperations

 The operations specific to list manipulation are collected here.

-->

<!ENTITY % listOperations "list | cons | car | cdr | append | isnull | islist |
nth |

count" >

<!-- expr

 The expr element is evaluated as one of its contained elements. A

copy of the result is returned.

@TBD: The table for interaction between arguments of the various

operators and the return types and exception generation of each has

been left to the implementor of the prototype. The semantics for implicit

casting have also been left to the implementor of the prototype.

 NOTE: Although the absence of this container would not create

ambiguities in the MID language (i.e., this container is redundant),

it is provided as a convenience to MID script interpreters. -->

<!ELEMENT expr - O (assign | variable | constant | function |

add | multiply | subtract | divide | modulus | eq | lt | gt | le | ge | and | or |

ne | not | gettype |

%stringOperations; | %listOperations; | gosub) >

<!-- variable

 The contents of the storage bound to the name are returned to the

caller. -->

<!ELEMENT variable - O (name) >

<!-- assign

MID-2 (3/96)

A-11

 The expression is evaluated and the results are placed in the

variable storage bound to the name. -->

<!ELEMENT assign - O (name, expr) >

<!-- function

 The arguments are evaluated in the order in which they appear and

the results are passed as arguments to the named funcdecl or xenodecl.

-->

<!ELEMENT function - O (name, argument*) >

<!-- argument

 The expression is evaluated as the argument passed to a

function. -->

<!ELEMENT argument - O (expr) >

<!-- add, multiply, subtract, divide, modulus, eq, lt, gt, le, ge,

and, or, ne, not

 The expressions are evaluated and the operation is applied according

to the data type. -->

<!ELEMENT (add | multiply) - O (expr+) >

<!ELEMENT (subtract | divide | modulus) - O (expr, expr) >

<!ELEMENT (eq | lt | gt | le | ge | and | or) - O (expr)+ >

<!ELEMENT ne - O (expr, expr) >

<!ELEMENT not - O (expr) >

<!-- constant

 The contents are evaluated and a value of the given constant type is

constructed. The contantType attribute specifies the data type.

The regular expressions and semantics for the MID primitives are as

follows, with keywords and letters folding case by the rule of the

SGML namecase.

 boolean

 ("true"|"false"|"1"|"0"|"yes"|"no")

"true", 1, and "yes" are equivalent; "false", 0, and "no" are

equivalent.

We declare the following as shorthand:

 DIGIT = ("0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9")

 NZDIGIT = ("1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9")

 int32, int64

 ("+"|"-")?, NZDIGIT, DIGIT*

These constants are base 10 representation only. "+" indicates

positive; "-" indicates negative.

 uint32, uint64

 NZDIGIT, DIGIT*

 These constants are base 10 representation only.

 float32, float64

 ("+"|"-")?, DIGIT+, ".", DIGIT+ , ("e", ("+"|"-")?, NZDIGIT, DIGIT*)?

The "e" means "times-ten-to-the". Digits are required on both sides

of the decimal point. The mantissa is represented in 16 bits for

float32, and 32 bits for float64. The remaining bits are reserved for

the exponent.

 sgmlchar

 And any single valid sgml character

 string

 any valid string of sgml characters

NOTE: In string and sgmlchar, record start (RS) and record end (RE)

are ignored according to the rules in ISO 8879.

-->

<!ELEMENT constant - O (get | #PCDATA)* >

<!ATTLIST constant

constantType (%constantTypes;) #REQUIRED

normalize (normalize | noNormalize) noNormalize

recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter

>

<!-- if, else

 If the expression evaluates to true, the statements in the

statements element are executed. Otherwise, the statements within the

else are evaluated. -->

<!ELEMENT if - O (expr, statements, else?) >

<!ELEMENT else - O (statements) >

<!-- loop

 The expression is evaluated. If the expression is true, the

MID-2 (3/96)

A-12

statements are executed. The expression is reevaluated and the

statements are reexecuted until the expression returns false. -->

<!ELEMENT loop - O (expr, statements) >

<!-- continue, break

 Continue causes execution to resume at the top of the nearest

enclosing loop, whereupon the loop's expr is reevaluated. As always,

if the expr evaluates to false, execution resumes at the statement

following the loop. Break causes execution to resume at the statement

following the nearest enclosing loop or switch. If there is no

lexically enclosing loop, continue is ignored. If there is no

lexically enclosing loop or switch, break is ignored. No stacks are

affected. Jumping to a point within a loop initiates looping

behavior. Jumping to a point within a switch causes the switch's expr

to be evaluated automatically prior to execution of any statements.

-->

<!ELEMENT (continue | break) - O EMPTY >

<!-- switch, case, default

 The expression is evaluated. Each of the expressions of the cases

is evaluated in the order in which the cases appear until one matches

the switch expression. If a match is found, the statements under the

matched case are executed until a break is encountered. Control

continues to the statements under the next case if no break is

encountered; the interceding expr is not evaluated. If no case

expression is matched, the default statements are executed.-->

<!ELEMENT switch - O (expr, case*, default?) >

<!ELEMENT case - O (expr, statements?) >

<!ELEMENT default - O (statements?) >

<!-- jump, scriptLabel

 Control immediately jumps to the named script label. Certain

restrictions apply: script labels are scoped local to a given

script. -->

<!ELEMENT jump - O (name) >

<!ELEMENT scriptLabel - O (name) >

<!-- gettype

 Returns the type of the expression. Return type: string. -->

<!ELEMENT gettype - O (expr) >

<!-- STRING OPERATIONS -->

<!-- strlen

 Returns the length of the string. Return type: uint32. Returns

zero if expression is not a string. -->

<!ELEMENT strlen - O (expr) >

<!-- substr

 First expr: string. Second expr: start position. Third expr: run

length. This construct returns the substring of the string, given

start position and run length. Start position is counted from 1.

Unspecified run length or run length greater than the length of the

string indicates the rest of string. Returns null string if start

position exceeds string length. Return type: string. -->

<!ELEMENT substr - O (expr, expr, expr?) >

<!-- strcat

 Returns the concatenation of the strings. Expressions in this

element's immediate content which evaluate to non-strings are ignored.

If space is specified, a space character is inserted between

expressions. If normalize is specified, leading and trailing white

space is removed, and multiple contiguous spaces are converted into a

single space.

Return type: string. -->

<!ELEMENT strcat - O (expr)+ >

<!ATTLIST strcat

 space (space | noSpace) noSpace

 normalize (normalize | noNormalize) noNormalize

 recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter

>

<!-- fold

 Returns the folded version of the string. Converts string to

uppercase using SGML name case folding rules. The name attribute

tells whether the name characters are to be folded according the SGML

declaration rules for entity names or for general names. Return type:

string. -->

<!ELEMENT fold - O (expr) >

<!ATTLIST fold

 name (general | entity) general

 normalize (normalize | noNormalize) noNormalize

 recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter

MID-2 (3/96)

A-13

>

<!-- isnull

 This function returns true if the expression is a null (empty)

string or a null list. It returns false otherwise. Return type:

boolean. -->

<!ELEMENT isnull - O (expr) >

<!-- isstring

 Returns whether the expression is a string. Return type: boolean.

-->

<!ELEMENT isstring - O (expr) >

<!-- LIST OPERATIONS -->

<!-- list

 Each expression in the content of this element is evaluated and

becomes an top-level item on the returned list. If no expressions are

specified, this element returns a null list. A list in MID has the

same binary tree implementation as lists in Lisp or Prolog. Return

type: list. -->

<!ELEMENT list - O (expr)* >

<!-- cons

 This function returns a list in which the result of evaluating the

first expression is prepended to the list found in the second

expression. The second expression must be a list. Return type: list.

NOTE: The names cons, car, and cdr, while perhaps non-intuitive in

English, is precisely meaningful in LISP or Prolog; they were chosen

deliberately to enhance interdisciplinary communications. -->

<!ELEMENT cons - O (expr, expr) >

<!-- car

 This function returns the car of the list, i.e, the first item of a

cons pair. The expression must be a list. Return type: any. -->

<!ELEMENT car - O (expr) >

<!-- cdr

 This function returns all but the first item in a list (the second

half of a cons pair). Return type: list. -->

<!ELEMENT cdr - O (expr) >

<!-- append

 This function returns the results of appending a list to a list.

Return type: list. -->

<!ELEMENT append - O (expr, expr) >

<!-- islist

 This function returns true if the expression is of type list.

Return type: boolean. -->

<!ELEMENT islist - O (expr) >

<!-- nth

 expr1: list. expr2: integer. Returns the nth item of the list,

counting from one, without recurring into nested lists. Returns the

null list if there is no such item. Return type: atom or list. -->

<!ELEMENT nth - O (expr, expr) >

<!-- count

 Returns the number of items in the given list, without recurring

into nested lists. Returns zero if expression is a list which has no

members. Return type: uint32. -->

<!ELEMENT count - O (expr) >

<!-- EXTERNAL PROCESS -->

<!-- xenodecl

 The xenodecl element binds a name and argument declarations to a

call to an external notation. The functionType attribute specifies

the return type of this construct.-->

<!ELEMENT xenodecl - O (name, argdecl*, xeno) >

<!ATTLIST xenodecl

 functionType (%functionTypes;) atom

>

<!-- xeno

 The xeno element represents a subclass of the HyTime notloc.

Argument names from the containing xenodecl indicate substitution into

the RCDATA of the xeno when the argument name is surrounded by the

string tokens specified in argBegin and argEnd.-->

<!ELEMENT xeno - O RCDATA >

<!ATTLIST xeno

MID-2 (3/96)

A-14

 HyTime NAME notloc

 id ID #IMPLIED

 qdomain IDREFS #IMPLIED

 qcontext IDREF #IMPLIED

 ordering (ordered | noorder) noorder

 set (set | notset) notset

 aggloc (aggloc | agglink | nagg) nagg

 argBegin CDATA "$("

 argEnd CDATA ")"

>

<!-- return

 This element terminates processing of the nearest containing

construct specified by the construct attribute, and returns the value

resulting from evaluating the expression. If there is no expression,

the return value is the default initialization for the stated return

type. -->

<!ELEMENT return - O (expr?) >

<!ATTLIST return

 construct (mid | chain | infoContainer | pane | alert | script | function)

function

>

<!-- HYTIME -->

<!-- security

 Security is an implementation of the HyTime activity form. The

security attribute tells what level of security. Elements mid and

pane may point to a security element, thereby indicating the security

level. The contained script (if any) will be run when the indicated

activity (in this case, access) occurs.-->

<!ELEMENT security - O (script)? >

<!ATTLIST security

 id ID #IMPLIED

 HyTime NAME activity

 actypes NAMES access

 level (unclassified | confidential | secret | topSecret) unclassified

>

<!-- The following HyTime location types are instantiated directly

from the HyTime standard. -->

<!ELEMENT nameloc - O (nmlist | HyQ)* >

<!ATTLIST nameloc

 HyTime NAME nameloc

 id ID #REQUIRED

 ordering (ordered | noorder) noorder

 set (set | notset) notset

 aggloc (aggloc | agglink | nagg) nagg

>

<!ELEMENT nmlist - O (#PCDATA) >

<!ATTLIST nmlist

 HyTime NAME nmlist

 nametype (entity | element | unified) #REQUIRED

 obnames (obnames | nobnames) #REQUIRED

 docorsub ENTITY #IMPLIED

 dtdorlpd NAMES #IMPLIED

>

<!ELEMENT HyQ - O (#PCDATA) >

<!ATTLIST HyQ

 HyTime NAME nmquery

 qdomain IDREFS #IMPLIED

 qcontext IDREF #IMPLIED

 notation NAME #FIXED HyQ

 delims CDATA #IMPLIED

 fn NAME #IMPLIED

 usefn NAME #CONREF

 args IDREFS #IMPLIED

 qpnpsn NAMES #IMPLIED

 qltnlmgi NAMES #IMPLIED

>

<!ELEMENT treeloc - O (marklist*) >

<!ATTLIST treeloc

 HyTime NAME treeloc

 id ID #REQUIRED

 overrun (error | wrap | trunc | ignore) error

 treecom (treecom | ntreecom) ntreecom

 locsrc IDREFS #IMPLIED

 ordering (ordered | noorder) noorder

 set (set | notset) notset

 aggloc (aggloc | agglink | nagg) nagg

>

<!ELEMENT relloc - O (dimlist*) >

<!ATTLIST relloc

 HyTime NAME relloc

 id ID #REQUIRED

 root IDREFS #IMPLIED

 relation (anc | esib | ysib | des | parent | children) parent

 overrun (error | wrap | trunc | ignore) error

 locsrc IDREFS #IMPLIED

MID-2 (3/96)

A-15

 ordering (ordered | noorder) noorder

 set (set | notset) notset

 aggloc (aggloc | agglink | nagg) nagg

>

<!ELEMENT dataloc - O (dimlist*) >

<!ATTLIST dataloc

 HyTime NAME dataloc

 id ID #REQUIRED

 quantum (str | norm | word | name | sint | date | time | utc) str

 catsrc (catsrc | nocatsrc) nocatsrc

 catres (catres | nocatres) nocatres

 overrun (error | wrap | trunc | ignore) error

 locsrc IDREFS #IMPLIED

 ordering (ordered | noorder) noorder

 set (set | notset) notset

 aggloc (aggloc | agglink | nagg) nagg

>

<!ELEMENT marklist O O (marklist | #PCDATA)* >

<!ATTLIST marklist

 HyTime NAME marklist

>

<!ELEMENT dimlist O O (dimlist | marklist | #PCDATA)* >

<!ATTLIST dimlist

 HyTime NAME dimlist

>

<!ELEMENT proploc - O (qpn | #PCDATA) >

<!ATTLIST proploc

 HyTime NAME proploc

 id ID #REQUIRED

 joint (joint | several) several

 apropsrc (apropsrc | solesrc) solesrc

 notprop (error | empty | ignore) ignore

 locsrc IDREFS #IMPLIED

 ordering (ordered | noorder) noorder

 set (set | notset) notset

 aggloc (aggloc | agglink | nagg) nagg

>

<!ELEMENT qpn - O (pn, spec?)+ >

<!ATTLIST qpn

 HyTime NAME qpn

 id ID #REQUIRED

>

<!ELEMENT pn - O RCDATA >

<!ATTLIST pn

 HyTime NAME pn

>

<!ELEMENT spec - O ((qpn | qltn)+ | pval) >

<!ATTLIST spec

 HyTime NAME spec

>

<!ELEMENT qltn - O RCDATA>

<!ATTLIST qltn

 HyTime NAME qltn

>

<!ELEMENT pval - O RCDATA >

<!ATTLIST pval

 HyTime NAME pval

>

<!ELEMENT notloc - O ANY >

<!ATTLIST notloc

 HyTime NAME notloc

 id ID #REQUIRED

 qdomain IDREFS #IMPLIED

 qcontext IDREF #IMPLIED

 fn NAME #IMPLIED

 usefn NAME #CONREF

 args CDATA #IMPLIED

 ordering (ordered | noorder) noorder

 set (set | notset) notset

 aggloc (aggloc | agglink | nagg) nagg

>

<!ELEMENT bibloc - O ANY >

<!ATTLIST bibloc

 HyTime NAME bibloc

 id ID #REQUIRED

 qdomain IDREFS #IMPLIED

 qcontext IDREF #IMPLIED

 fn NAME #IMPLIED

 usefn NAME #CONREF

 args CDATA #IMPLIED

>

MID-2 (3/96)

B-1

B. Relationship example (for illustration only)

First consider the modification of < relationship> to look like:
<!ELEMENT relationship - O (title,(%locs;)*)>
<!ATTLIST relationship
 HyTime NAME ilink
 MID NAME #FIXED relationship
 relationshipName #CDATA #FIXED
 id ID #IMPLIED
 anchrole CDATA #FIXED "antecedent #AGG consequent #AGG"
 linkends IDREFS #REQUIRED
 privTrav NAMES #IMPLIED
 extra NAMES #IMPLIED
 intra NAMES #IMPLIED
 endterms IDREFS #IMPLIED
 aggtrav NAMES agg
 traversal (gosub | spawn | goto | undefined) spawn
>

The relationshipName is a displayable string that indicates the purpose of each element that is derived
from the relationship form.

The privTrav contains none, one, or all of the anchrole names. Its purpose is to define a default
traversal from none, all, or each linkend to another linkend within the relationship.

Now here’s an example.We create a relationship element called 'equipment' that will represent any
single equipment component of a subsystem. The ‘subsystem’ containing the equipment will be a
second relationship. Each equipment - in this case a radio and a fire extinguisher - has a common set
of contexts (that the author has defined) where references to equipment are found. In addition,
groups of equipment may be found in subsystems.

For example, the author plans to identify the ‘AN/ABC Radio Set’ equipment in the context of
descriptive text, photos, schematic diagrams, and a parts list. Similarly, he will identify 'NoFire Model
42' fire extinguisher as an equipment element in text, photo, schematic, and parts list. For each
equipment, there will also be a list of hotspots (in text and graphics) that refer to the same equipment.
There can be multiple schematics and hotspots, as indicated by the #AGG (which specifies that the
link is allowed to be aggregate, e.g., a nameloc with a namelist containing multiple IDREFs).

Here’s what the DTD looks like for the equipment relationship element:
<!ELEMENT equipment - O (title,(%locs;)*)>
<!ATTLIST equipment
 HyTime NAME ilink
 MID NAME #FIXED relationship
 relationshipName #CDATA #FIXED "Component"
 id ID #IMPLIED
 anchrole CDATA #FIXED "descriptiveInfo
 photo
 schematics #AGG
 partList
 hotspots #AGG"

MID-2 (3/96)

B-2

 linkends IDREFS #REQUIRED
 privTrav NAMES #IMPLIED
 extra NAMES #ALL
 intra NAMES #ALL
 endterms IDREFS #IMPLIED
 aggtrav NAMES agg
 traversal (gosub | spawn | goto | undefined) spawn
>

There are hotspots, for both the fire extinguisher and the radio, in the text of an alert. However, the
hotspot for the radio actually refers to the power switch of the radio. Therefore, we wish the traversal
from the power switch hotspot to take us to a particular location on the radio photograph, not just
the graphic pane containing the photo. This requires us to got through a notation to bring the photo
objects from Microsoft SHG format into the MID name space. To make this less obtuse, we create a
second relationship type called directRel that allows us to specify a preferred traversal from the
hotspot to the powerswitch object on the photo. Note that the equipment relationship can only
specify a privTrav from the set of hotspots to the photo, not from a specific hotspot to an object on
the photo. Applications must sort out the possible ambiguity of multiple privTravs on the same
anchor, but from different relationships, having conflicting traversal priorities.
<!ELEMENT directRel - O (title,(%locs;)*)>
<!ATTLIST directRel
 HyTime NAME ilink
 MID NAME #FIXED relationship
 relationshipName #CDATA #FIXED "Direct Link"
 id ID #IMPLIED
 anchrole CDATA #FIXED "source destination”
 linkends IDREFS #IMPLIED
 privTrav NAMES #IMPLIED
 extra NAMES “A E”
 intra NAMES “A E”
 endterms IDREFS #IMPLIED
 traversal (gosub | spawn | goto | undefined) spawn
>

Now, moving up a level to the subsystem definition, the author creates a third relationship element
that specifies that a particular set of equipment (subsystem components) belongs to a subsystem. We
will define a specific subsystem for Emergency Management that will contain both the radio and the
fire extinguisher. Here is the DTD element:
<!ELEMENT subsystem - O (title?, %locs;*)>
<!ATTLIST subsystem
 HyTime NAME ilink
 MID NAME #FIXED relationship
 relationshipName #CDATA #FIXED "Subsystem"
 id ID #IMPLIED
 anchrole CDATA #FIXED " components #AGG"
 linkends IDREFS #IMPLIED
 privTrav NAMES #IMPLIED
 extra NAMES #ALL
 intra NAMES #ALL
 endterms IDREFS #IMPLIED
 aggtrav NAMES agg
 traversal (gosub | spawn | goto | undefined) spawn
>

MID-2 (3/96)

B-3

The ‘schematics’ and ‘hotspots’ linkends in the equipment element, and the ‘components’ linkend in
the subsystem element, actually comprise a nmlist of equipment elements.

Here is what we have so far:

 Hence, the instance looks something like this:
...
<pool>

<!-- These are the relationships -->

<equipment id=anabc linkends="abcText abcPhoto abcWiringDiagrams abcPartList
abcHotspots">
 <title>AN/ABC Radio Set</title>
 <!-- list of schematics #AGG -->
 <nameloc id=abcWiringDiagrams>
 <nmlist nametype=element obnames=nobnames >
 abcWiring01of03 abcWiring02of03 abcWiring03of03 </nmlist>
 </nameloc>
 <!-- list of hotspots #AGG -->
 <nameloc id=abcHotspots>
 <nmlist nametype=element obnames=nobnames >
 abc001 abc002 abc003 abc004 </nmlist>
 </nameloc>
</equipment>

<equipment id=nofire linkends="nofireText nofirePhoto nofireSchems nofirePartList
nofireHotspots">
 <title>NoFire Model 42</title>
 <nameloc id=nofireSchems>
 <nmlist nametype=element obnames=nobnames >
 nofireSchem1 nofireSchem2 </nmlist>
 </nameloc>
 <nameloc id=nofireHotspots>
 <nmlist nametype=element obnames=nobnames >
 nofire001 nofire002 nofire003 nofire004 </nmlist>
 </nameloc>
</equipment>

<!-- ‘naked’ pane in the pool -->
<pane id=nofireTextPane>
 <text id=nofireText>
 The NoFire Model 42 Fire Extinguisher puts out fires and spews chemicals like a
champ.
 </text>

MID-2 (3/96)

B-4

</pane>

<subsystem id=emSubsystem linkends="emNames" traversal=gosub>
 <title>Emergency Management</title>
 <nameloc id=emNames>
 <nmlist nametype=element obnames=nobnames >
 anabc nofire </nmlist>
 </nameloc>
</subsystem>

<!-- Here is the part that does the directRel from the specific hotword in the
alert to the power switch object in the photo, called ‘powerswitch’ -->

<!-- SHG is Microsoft file format that embeds named coordinate zones in a Windows
bitmap .BMP -->
<!NOTATION SHG PUBLIC
 "-//ISBN 0-7923-9432-1::Graphic Notation//NOTATION
 Microsoft Segmented Hypermedia//EN">

<!NOTATION SHGNAMES PUBLIC
 "-//MIDcommittee//NOTATION
 shgnames//EN">

<!ENTITY abcShgFile SYSTEM "radioabc.shg" NDATA SHG>

<!-- Give the entity an ID -->
<nameloc id=abcGraphic>
 <nmlist nametype=entity obnames=nobnames>
 abcShgFile</nmlist></nameloc>

<!-- This pane is an anchor for equipment ‘anabc’ -->
<pane id=abcPhoto>
 <graphic id=renderGraphic>
 <get target=abcGraphic></graphic></pane>

<notloc id=abcPowerSwitchLoc notation=“SHGNAMES” qdomain=abcGraphic>
 powerswitch</notloc>

<!-- Here is the relationship directRel defining immediate traversal to the power
switch location graphic, even though the linkend abc001 is also listed as a
linkend of the equipment relationship -->

<directRel
 id=abc001powerswitch
 linkends=“abc001 abcPowerSwitchLoc”
 privTrav=destination
 endterms=“#NONE abcPowerSwitchLoc”>
 <title>AN/ABC Radio Power Switch Location</title>
</directRel>

</pool>

...
<!-- We somehow get to a repair procedure -->

<chain id=engineRepair>
...

<infoContainer id=engineRepairStep006>

MID-2 (3/96)

B-5

 <title>Removing the Battery</title>
 <clientArea>
 <alert id=a004 type=warning>
 <title>Spark Hazard
 <text>When removing the battery terminal connectors,
 there is a chance that a spark will be generated.
 Be sure you are familiar with the location of a trusty
 <specialText id=nofire001 type=anchor>
 NoFire Model 42 Fire Extinguisher</specialText>
 and the power switch of the shipboard
 <specialText id=abc001 type=anchor>AN/ABC Radio Set</specialText>.
 </text>
 </alert>
 <pane>
...
</infoContainer>

...

The specialText element nofire001 is an anchor for one of the nofireHotspots links in the
equipment relationship nofire.

The specialText element abc001 is both (1) an anchor for one of the abcHotspots links in the
equipment relationship anabc, and (2) an anchor for the source linkend of the directRel
relationship abc001powerswitch. Because the directRel has a privTrav that applies (based on
the endterms) to traversal from the hotword to the graphic coordinate zone, this traversal will take
precedence over those defined by the equipment relationship.

What the Browser (MIDReader) Application does with all this stuff.

A browser application could set the primary method for activating a link as a left mouse button click.
Additional information can be gathered by clicking the right mouse button.

For the example above, a user might get the same action from left or right mouse-clicks on the
nofire001 hotword - a list of possible traversals from the information in the table below.

relationshipName
from DTD

contents of the
relationship title

anchrole

Component NoFire Model 42 descriptiveInfo
Component NoFire Model 42 photo
Component NoFire Model 42 schematics
Component NoFire Model 42 partList
Component NoFire Model 42 hotspots
Subsystem Emergency Management components

In the case of the abc001 hotword, the left mouse-click might launch a graphic pane containing the
AN/ABC Radio photo, with the powerswitch object highlighted. A right-click would produce a list
of possible traversals similar to the one above:

relationshipName
from DTD

contents of the instance
of relationship title

anchrole

MID-2 (3/96)

B-6

Component AN/ABC Radio Set descriptiveInfo
Component AN/ABC Radio Set photo
Component AN/ABC Radio Set schematics
Component AN/ABC Radio Set partList
Component AN/ABC Radio Set hotspots
Subsystem Emergency Management components
Direct Link AN/ABC Radio Power

Switch Location
destination

At this point, it is left to the application to make a seamless connection between the
abcPowerSwitchLoc (or the powerswitch object in the graphic through some other method than
notloc), and the graphic window that will display it (i.e., the application should launch its own
window given a named element in a known graphic entity).

MID-2 (3/96)

C-1

C. MID Background

C.1 Background

The purpose of a metafile for interactive documents is to embed behavior in an Interactive Electronic Technical Manual
(IETM) document, and to improve portability and reuse of that document. The metafile enables IETM documents to
be transferred from dissimilar authoring systems for unambiguous presentation and interaction on dissimilar display
systems.

C.1.1 Interactive Electronic Technical Manual

An IETM, as defined in the DoD IETM Specifications, is a package of information required for the diagnosis and
maintenance of a weapons system, optimally arranged and formatted for interactive screen presentation to the end-
user. It is a Technical Manual prepared (authored) by a contractor and delivered to the Government, or prepared by a
Government activity, in digital form on a suitable medium, by means of an automated authoring system. An IETM is
designed for electronic screen display to an end user, and has the following three characteristics:

1. The information is designed and formatted for screen presentation to enhance comprehension.

2. The elements of technical data making up the TM are interrelated. A user's access to required information is
possible by a variety of paths.

3. The computer-controlled TM display device functions interactively (as a result of user requests and information
input) to provide procedural guidance, navigational directions, and supplemental information.

IETMs allow a user to locate required information faster and more easily than is possible with a paper technical
manual. They are easier to comprehend, more specifically matched to the system configuration under diagnosis, and
are available in a form that requires much less physical storage than paper. Powerful interactive troubleshooting
procedures, not possible with paper technical manuals, can be made available using the intelligent features of the IETM
display device.

C.1.2 Metafile for Interactive Documents

MIL-M-87268 and MIL-D-87269 define the process for authoring and displaying IETMs. They implement an
underlying strategy that separates the IETM source data base from the electronic display of the formatted IETM. The
roles of these specifications are as follows:

• MIL-M-87268 defines how the IETM should look and behave to the reader.

• MIL-D-87269 establishes the IETM database forms, structure, and key controlling mechanisms.

This process has found favor in the IETM development community. Most DoD IETM applications separate the
presentation attributes from the IETM content. However, since the standardization focus has been on the database data
structures and not on the run-time version of the IETM, (the View Package), each software vendor has developed a
proprietary format for capturing and moving the IETM to the Presentation System. In attempting to maintain a flexible
approach to the definition of the IETM data base, the specifications nearly guarantee non-portability across different
vendor products.

The current specifications define the data format and contents for the IETM database, and define the targeted "look and
feel" for the Presentation System. What has not been defined is how the ported IETM looks, i.e., what the Presentation
System reads as the IETM.

To completely specify the electronic pathway for the process of preparing and using IETMs, there must also be an
unambiguous definition of the "portable IETM" -- the data that is produced by an Authoring System from the source
data and read by the Presentation System for display. IETM Presentation Systems must be able to take this "neutral"
data from varying authoring systems and structure it for display on dissimilar Presentation Systems with a minimum
amount of human intervention. This is the place for the MID.

MID-2 (3/96)

C-2

Figure C-1. Current and Future IETM Systems

As shown in Figure C-1, an Authoring System currently must generate a separate version of an IETM for each targeted
Presentation System. It is obvious that a common interchange structure simplifies both the Authoring Systems and the
Presentation Systems.

The structure for the ported IETM is called the Metafile for Interactive Documents (MID). The MID provides target
structures for the authoring systems to write to, and for the Presentation Systems to read from. It is an intermediate
structure that, once specified, completes the IETM process, as shown in the second part of Figure C-1 and in Figure C-
2.

Figure C-2. The IETM Process

MID-2 (3/96)

C-3

The Source System exports a MID instance which is transferred to the Translation, Compilation or Interpretation
software in the Presentation system. The output from the Compilation or Translation software may be encoded in a
Run-Time structure that is read by the Target System and presented on the Device. Otherwise, a Target system may
interpret and present the MID instance directly.

C.1.3 Goals and Objectives

The objective of this effort is to develop for the U.S. Navy, a rigid and precise data format which contains or references
all the content from an IETM data base developed in accordance with MIL-D-87269 or other specified definitions, but
structured to contain all the sequencing information necessary to unambiguously specify the behavior of that
information when presented. Use of the MID will ensure interoperability between two or more independently
developed MID instances which refer to information in the other using an external reference format specifed in this
document and based on the international standard for location and addressing in hypermedia, ISO 10744 - HyTime.
This will result in an unambiguous, complete, precise and consistent presentation of the IETM information across
dissimilar authoring tools and Presentation Systems.

C.2 MID REQUIREMENTS

The first step in the MID development was to establish the following requirements for the MID specification:

1. A MID can provide a portable container of data from the document database (e.g., MIL-D-87269) suitable for the
Presentation System (e.g., MIL-M-87268).

2. A MID must enable an implementor to create a very simple, yet efficient presentation of IETM information on any
delivery device that is capable of the most common graphical user interface interaction and display operations.

3. A MID can be disconnected from the document database without losing essential content.

4. A MID must be readable and displayable in many common hardware/software environments.

5. A MID does not need to be editable in its defined format.

6. A MID must be based on accepted international standards (e.g., SGML, HyTime).

7. A MID must be implementable.

8. A MID must be based on current technology.

9. A MID is targeted to multimedia presentation of complex information.

10. A MID is targeted to a single and deliberately simple presentation. Different MID instances may be developed for
different MIL-D-87269 content layers (each utilizing standard MID element types) or for information that is
constrained by non-MIL-D-87269 databases and data in non-SGML notations.

11. A MID separates those attributes of GUI design that are typically specific and proprietary to the vendors from those
that are similar across GUIs.

12. A MID must be extensible (e.g., include a process (an "escape" mechanism) to accommodate new component
types).

13. A MID is independent of specific authoring and Presentation Systems.

14. A MID is unambiguous; it must provide sufficiently explicit definition of data types and execution semantics so as
to enable unambiguous IETM presentations on differing target display systems.

15. While source files must be transportable to MID files, there is no requirement that MID files must be transportable
back to the original source.

16. The potential functionality of the MID must encompass all functionality defined in MIL-D-87269 and MIL-M-
87268.

MID-2 (3/96)

C-4

C.3 THE MID ARCHITECTURE

The role of the MID is to provide a language for authoring and transporting "intelligent" documents. The MID
architecture enables an author to determine where and how much that "intelligence" is used to direct a user in locating
and interacting with the information. While the presentation format and behaviors of the "intelligent" document are
standardized by a MID, the MID is free of complex content structures. All information presented in a MID is
represented by a small set of content primitives. This enables the MID to be used for many hypermedia applications.

C.3.1 Overview

The MID provides a modular approach to authoring and maintaining IETMs. A MID standardizes the presentation of
information and the behavior of that presentation across platforms. This is achieved through a standard set of user
interface objects combined with an internal scripting language that controls the interaction of these objects with each
other and the user as the objects access databases and display information on a Presentation System.

Cross-platform interoperability is achieved through the use of SGML/HyTime. The MID is an application of SGML
(ISO 8879) and HyTime (ISO 10744). SGML standardizes the syntax of the Document Type Definition for the MID
language. HyTime provides standard models for location and addressing element types used in the MID DTD. This
document assumes that the reader is familiar with the concepts and requirements of SGML.

Figure C-3. MID Document Element Type

C.3.1.1 Using MID Scripts

A Presentation System starts a MID interactive session based on the contents of the MID Master Script in the document
instance. As the Master Script assumes control of the session, any < infoContainer> automatically returns to the
Master Script if no other link is provided in the < infoContainer> and executes the next statement in the Master Script.
Figure C-4 illustrates the components of a < script> element type.

Figure C-4. MID Script Element Type

The example script below contains a < gosub> link which is processed. The result of the first < gosub> sets a "choice"
variable that was declared as an application global variable. Next, a switch statement is executed that contains two
<case> statements which are evaluated to determine which of two < goto> links are traversed. Upon returning to the

MID-2 (3/96)

C-5

Master Script, another < gosub> is executed. All other processing is determined by the instructions encapsulated in
each <infoContainer>.

<script><statements>

 <gosub target=i1>

 <switch><expression><variable><name>choice

 <case><expression><constant>House

 <statements><goto target=i2></statements>

 </case>

 <case><expression><constant>Automobile

 <statements><goto target=i3></statements>

 </case>

 </switch>

 <gosub target=i4>

</script>

The complexity of a MID Master Script depends on the overall complexity of the set of MID document entities, the
relationships among them, and the mission of the IETM. MID allows for flexible approaches to encoding an IETM as
many different sources can be used which have different requirements for the levels of directing the navigation of their
content. For example, a training script may constrain the user of the IETM to view information in a specific order;
whereas, a technical manual may allow browsing in parts of the IETM at will.

Another example involves a document containing several traditional volumes of information. A MID can control
access to multiple subsets of the volumes by a master index which enables a user to determine which volume has the
information required. The initial Master MID could be a very simple script that functions as an Index of Volumes with
hyperlinked content tables; or, it could be a very complex script that uses interactive dialogs to determine what
information is needed, locates that information and presents it. How the author distributes the "intelligent" aspects of a
document is a matter of style, efficiency of processing and the phase of document creation.

C.3.1.2 Using Application Global Declarations

Declarations in MID are scoped by the major element within which they are declared. Application globals, however,
declare the global functions and variables that are available to any function that requires them during execution of a
MID script. Figure C-5 shows the types of application globals:

Figure C-5. Applications Globals

MID-2 (3/96)

C-6

The variable declaration, < vardecl> declares a <type> for the variable. The <type> is a string. Elements for MID
function declarations (funcdecl), and declarations for non-MID functions (xenodecl) are also included in the
application globals. Note: The current revisions to the MID has changed and eliminated the use of “application
globals” as mentioned in this section.

C.3.1.3 Using Information Containers

For the MID user, the Information Container is the locus of interaction. An Information Container has user interface
objects and content that are presented to the user and managed by the processing of infoContainers.

Figure C-6. Information Container Element Type

Although it is convenient to divide the information by screens, the MID author should note that one < infoContainer>
does not always equate to one screen. For example, an alert may be displayed prior to imaging the panes in a client
area. All of the processing is in one < infoContainer>, although to the human observer, they might appear to be
separate screens. For this reason it is more useful to think of an < infoContainer> as encapsulating a state space or unit
of process although it is more natural to consider it a unit of presentation.

C.3.1.4 Using Pools

Pools enable the author to reuse common dialogs and alerts. From within a script, the author can use an element in the
pool by linking to it using a < get>, then return to the place in the script from which the pool element was called.

A common application of a < pool> is to hold all of the Warnings, Cautions and Notes that are reused extensively
throughout an IETM.

C.3.1.5 Using Queries to Access Document Databases

In the MID DTD, the following construct is often found in the content model of element types.

get | #PCDATA | script

The capability to determine the target of a link based on the evaluation of a script is referred to as "dynamic
hyperlinking." The SGML OR group shown above provides the basic structure which defines dynamic hyperlinking in
a MID. Dynamic hyperlinking is the essence of advanced IETM capability. The element types are:

• get - a link to a location element found in a <locContainer>, <poolContainer> or directly to an < infoContainer>
in the MID document instance. Note: In the current version of the MID, locContainer and poolContainer
functions have been incorporated in the pool element.

• #PCDATA - directly displayable content.

• script - A MID script that returns a node of information based on the evaluation of conditions defined within the
script

MID-2 (3/96)

C-7

Element types that have this content model can be linked to external databases through location elements or to internal
containers. When the "get" link points to a location model in a HyTime location address, this method of indirect
linking is referred to as a "location ladder".

When information from an external source is copied into a MID document instance, this is called a "hard MID". A
MID that accesses an external document database through the use of HyTime queries, called HyQs or other HyTime
location element types is referred to as a "soft" MID. The following are some reasons for creating "soft" and "hard"
MIDs:

• A MID document instance is delivered without the supporting database. This is a "hard" MID in which all of the
location elements are resolved and the content that they locate is copied directly into the MID document instance.
This could be done because the target Presentation System cannot interpret and execute queries.

• A MID document is created without a supporting database. In this "hard" MID, there is no requirement for the
external database; so, the author creates information directly in the MID form. Such information includes general
maintenance procedures that are reused across systems without change.

• A MID document instance is delivered with the supporting database. This "soft" MID might be preferable because
the database contains information not duplicated or referenced by the IETM that must be preserved without
alteration.

• A "soft" MID document instance is maintained as the source database is undergoing changes that must be reflected
in the contents of the MID. This would be typical of production environments that create IETMs for delivery, e.g.,
integrated logistics support groups. For example, the MIL-D-87269 database contains technical information about
systems with long life cycles. The frequency for updating information in the database is rapid in early stages of
system development. Soft MIDs used for the early stages of development allow an author to use the MID
Presentation System as an integrating tool which is slowly hardened as design information is configured.

Note that the degree of hardening can vary among and within MID document instances. Any MID can contain a
mixture of "soft" and "hard" addresses. How this mix is defined depends on the mission of the MID within the
contractual deliverables of a weapons system.

C.3.1.6 Using Location Models

Below is an example of "soft" linking. In the example, a HyQ is shown along with a "hard" link for comparison.

<nameloc id="i24761144.name">

 <HyQ qdomain="i24761144">Proploc(DOMROOT ATTVAL[name] EMPTY)

 <nameloc id="i24761144">

 <nmlist docorsub="house">i24761144

 <treeloc id="i236438177.fc" locsrc="i236438177"> 1 1

 <nmlist docorsub="house">i236438177

Three types of "soft" links are illustrated:

a. Named Location with Query - upon access, the HyQ query is evaluated and the string inside the attribute value
"name" is returned. The query domain (qdomain) value (i24761144) is used to determine the target of the query
operation (i.e., the element or entity where the value is located).

b. Named Location with Name List - upon access, this opens the document or subdocument pointed to in the location
of a document referenced by the "house" entity. The ID of the element to be located in the "house" document is the
content of the element, i24761144.

c. Tree Location with Name List - upon access, this also opens the "house" document and locates the element with
the ID value "i236438177". Upon locating the element, the markers (1 1) are used to count elements by their

MID-2 (3/96)

C-8

position in the element hierarchy until the desired element is located. This method is used to locate information in
a node not identified by an ID or other named value.

Other types of HyTime location models are also supported by the MID.

Within the Master Script or inside an < infoContainer>, an element like the following is used to access a location
element:

<infoContainer id=welcome>

 <title><get target=i24761144.name></title>

When encountered in the < infoContainer>, the <get> accesses the < nameloc> whose ID matches the value in the
<get> target attribute, (target=124761144.name). This is the first nameloc in the example above (a.). It contains a
HyQ query to open the MIL-D-87269 document instance whose location is encoded in an entity declaration "house".
That entity is accessed through the next nameloc whose ID is "i24761144". This nameloc contains a name list
<nmlist> which has a "document or subdocument" attribute whose value, "house" is the actual name of the entity that
locates the "house" document which contains an element whose ID is also "i24761144".

When the value in the "house" document is returned, it replaces the < get> link in the MID as the content of the < title>
element. At that point, if simply displayed, the link remains soft; however, if the value is actually copied into the
location of the < get>, the link becomes "hard". That is, the content of the < title> element is no longer a link; it is text
(#PCDATA) displayed as the title.

The technique of using queries is referred to as "late binding". It enables an author to postpone the actual insertion of
content into an IETM until some event in the project schedule indicates that the content is ready. By using a script and
query mechanisms to evaluate conditions of other documents, dynamic linking and late binding concepts can be used in
powerful and flexible ways.

While this location ladder is complex at first glance, it illustrates these concepts:

• All external locations are identified by entity declarations

• The name space of each SGML document instance is encapsulated in scope. Therefore, having a < nameloc> in
one instance with an ID will not conflict with an element in another instance with the same value for its ID.

• Location ladders and indirect linking enable powerful reuse of links.

A benefit of using the indirect location element types is that once the location of an object is encoded with a HyTime
location address, other elements can use the same location element to locate the same data from anywhere in a MID
document instance. A non-redundant location scheme reduces the maintenance of a MID and enables the reuse of
linking information.

C.3.2 Using Non-MIL-D-87269 or MIL-M-87268 Specifications for MID Designs

The MID DTD enables MIDs to be defined and delivered for sources of data other than the MIL-D-87269 class of
document type definitions and non-SGML data types. Because the source document types are decoupled from the MID
components that provide the description of the Presentation System, and these can be decoupled from the custom
libraries (e.g., HyQ functions or other access methods) that access the source document, it is possible with careful
design to provide highly reusable components.

The MID presentation components apply to source documents that use a traditional paper-based approach. If the
source document type is changed (e.g., World Wide Web Hypertext Markup Language (HTML), the Computer
Graphics Metafile (CGM), semi-conductor manufacturing embedded training), only the SGML elements containing the
information directly related to the document type is modified, e.g., the queries. If a different database type (e.g.,
relational) is required, notation locations or external processes, (e.q., SQL), for queries in the new database type are
used.

	Cover
	Table of Contents
	1.0 How to use this guide
	2.0 References & Other info
	2.1 References
	2.2 Other Sources

	3.0 MID Definition
	4.0 Why you need MID
	4.1 Behavior of apps
	4.2 MID approach

	5.0 General Theory Descr.
	5.1 Containers
	5.2 Transitions & Links
	5.3 Controls
	5.4 Data Types
	5.5 Semantic Grouping
	5.6 Conditionals
	5.7 Scripting
	5.8 External Processes
	5.9 HyTime Location
	5.10 HyTime & SGML Mgmt.

	6.0 DTD with annotations
	7.0 Index of Elements
	8.0 Summary of Changes
	App. A MID DTD
	App. B Relationship Example
	App. C MID Background

